MaxKB/apps/models_provider/impl/wenxin_model_provider/model/embedding.py

66 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
"""
@project: MaxKB
@Author
@file embedding.py
@date2024/10/17 16:48
@desc:
"""
from typing import Dict, List
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
import openai
from models_provider.base_model_provider import MaxKBBaseModel
class QianfanV1Embeddings(MaxKBBaseModel, QianfanEmbeddingsEndpoint):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
return QianfanV1Embeddings(
model=model_name,
qianfan_ak=model_credential.get('qianfan_ak'),
qianfan_sk=model_credential.get('qianfan_sk'),
)
class QianfanV2EmbeddingModel(MaxKBBaseModel):
model_name: str
@staticmethod
def is_cache_model():
return False
def __init__(self, api_key, base_url, model_name: str):
self.client = openai.OpenAI(api_key=api_key, base_url=base_url).embeddings
self.model_name = model_name
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
return QianfanV2EmbeddingModel(
api_key=model_credential.get('qianfan_ak'),
model_name=model_name,
base_url=model_credential.get('api_base'),
)
def embed_query(self, text: str):
res = self.embed_documents([text])
return res[0]
def embed_documents(
self, texts: List[ str],
) -> List[List[float]]:
res = self.client.create(input=texts, model=self.model_name, encoding_format="float")
return [e.embedding for e in res.data]
class QianfanEmbeddings(MaxKBBaseModel):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
api_version = model_credential.get('api_version', 'v1')
if api_version == "v1":
return QianfanV1Embeddings.new_instance(model_type, model_name, model_credential, **model_kwargs)
elif api_version == "v2":
return QianfanV2EmbeddingModel.new_instance(model_type, model_name, model_credential, **model_kwargs)