feat: add support for v2 API version in embedding models and update validation logic

This commit is contained in:
wxg0103 2025-08-26 13:20:08 +08:00
parent 20cf018c81
commit 8cdb085734
3 changed files with 88 additions and 14 deletions

View File

@ -9,7 +9,6 @@
from typing import List, Dict
from langchain_core.messages import BaseMessage, get_buffer_string
from langchain_openai.chat_models import ChatOpenAI
from common.config.tokenizer_manage_config import TokenizerManage
from models_provider.base_model_provider import MaxKBBaseModel

View File

@ -21,11 +21,27 @@ class QianfanEmbeddingCredential(BaseForm, BaseModelCredential):
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], model_params, provider,
raise_exception=False):
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value,
_('{model_type} Model type is not supported').format(model_type=model_type))
self.valid_form(model_credential)
api_version = model_credential.get('api_version', 'v1')
model = provider.get_model(model_type, model_name, model_credential, **model_params)
if api_version == 'v1':
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value,
_('{model_type} Model type is not supported').format(model_type=model_type))
model_info = [model.lower() for model in model.client.models()]
if not model_info.__contains__(model_name.lower()):
raise AppApiException(ValidCode.valid_error.value,
_('{model_name} The model does not support').format(model_name=model_name))
required_keys = ['qianfan_ak', 'qianfan_sk']
if api_version == 'v2':
required_keys = ['api_base', 'qianfan_ak']
for key in required_keys:
if key not in model_credential:
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, _('{key} is required').format(key=key))
else:
return False
try:
model = provider.get_model(model_type, model_name, model_credential)
model.embed_query(_('Hello'))
@ -42,8 +58,25 @@ class QianfanEmbeddingCredential(BaseForm, BaseModelCredential):
return True
def encryption_dict(self, model: Dict[str, object]):
return {**model, 'qianfan_sk': super().encryption(model.get('qianfan_sk', ''))}
api_version = model.get('api_version', 'v1')
if api_version == 'v1':
return {**model, 'qianfan_sk': super().encryption(model.get('qianfan_sk', ''))}
else: # v2
return {**model, 'qianfan_ak': super().encryption(model.get('qianfan_ak', ''))}
api_version = forms.Radio('API Version', required=True, text_field='label', value_field='value',
option_list=[
{'label': 'v1', 'value': 'v1'},
{'label': 'v2', 'value': 'v2'}
],
default_value='v1',
provider='',
method='', )
# v2版本字段
api_base = forms.TextInputField("API URL", required=True, relation_show_field_dict={"api_version": ["v2"]})
# v1版本字段
qianfan_ak = forms.PasswordInputField('API Key', required=True)
qianfan_sk = forms.PasswordInputField("Secret Key", required=True)
qianfan_sk = forms.PasswordInputField("Secret Key", required=True,
relation_show_field_dict={"api_version": ["v1"]})

View File

@ -6,18 +6,60 @@
@date2024/10/17 16:48
@desc:
"""
from typing import Dict
from typing import Dict, List
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
import openai
from models_provider.base_model_provider import MaxKBBaseModel
class QianfanEmbeddings(MaxKBBaseModel, QianfanEmbeddingsEndpoint):
class QianfanV1Embeddings(MaxKBBaseModel, QianfanEmbeddingsEndpoint):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
return QianfanEmbeddings(
return QianfanV1Embeddings(
model=model_name,
qianfan_ak=model_credential.get('qianfan_ak'),
qianfan_sk=model_credential.get('qianfan_sk'),
)
class QianfanV2EmbeddingModel(MaxKBBaseModel):
model_name: str
@staticmethod
def is_cache_model():
return False
def __init__(self, api_key, base_url, model_name: str):
self.client = openai.OpenAI(api_key=api_key, base_url=base_url).embeddings
self.model_name = model_name
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
return QianfanV2EmbeddingModel(
api_key=model_credential.get('qianfan_ak'),
model_name=model_name,
base_url=model_credential.get('api_base'),
)
def embed_query(self, text: str):
res = self.embed_documents([text])
return res[0]
def embed_documents(
self, texts: List[ str],
) -> List[List[float]]:
res = self.client.create(input=texts, model=self.model_name, encoding_format="float")
return [e.embedding for e in res.data]
class QianfanEmbeddings(MaxKBBaseModel):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
api_version = model_credential.get('api_version', 'v1')
if api_version == "v1":
return QianfanV1Embeddings.new_instance(model_type, model_name, model_credential, **model_kwargs)
elif api_version == "v2":
return QianfanV2EmbeddingModel.new_instance(model_type, model_name, model_credential, **model_kwargs)