add one new zh blog

Signed-off-by: faweizhao26 <faweizhao@kubesphere.io>
This commit is contained in:
faweizhao26 2024-04-11 17:47:05 +08:00
parent c1b2b19c2e
commit 5563d9d3ee
3 changed files with 674 additions and 4 deletions

View File

@ -0,0 +1,670 @@
---
title: '使用 Prometheus 在 KubeSphere 上监控 KubeEdge 边缘节点Jetson CPU、GPU 状态'
tag: 'KubeSphere'
keywords: 'KubeSphere, Prometheus, Kubernetes, KubeEdge, Jetson, GPU, CPU'
description: '本文基于 KubeSphere 和 KubeEdge 构建云边一体化计算平台,通过 Prometheus 来监控 Nvidia Jetson 边缘设备状态,实现 KubeSphere 在边缘节点的可观测性。'
createTime: '2024-04-11'
author: '朱亚光'
snapshot: 'https://pek3b.qingstor.com/kubesphere-community/images/using-prometheus-monitor-jetson-edge-cover.png'
---
> 作者:朱亚光,之江实验室工程师,云原生/开源爱好者。
## KubeSphere 边缘节点的可观测性
在边缘计算场景下KubeSphere 基于 KubeEdge 实现应用与工作负载在云端与边缘节点的统一分发与管理,解决在海量边、端设备上完成应用交付、运维、管控的需求。
根据 KubeSphere 的[支持矩阵](https://kubesphere.io/zh/docs/v3.3/installing-on-linux/introduction/kubekey/#%e6%94%af%e6%8c%81%e7%9f%a9%e9%98%b5),只有 1.23.x 版本的 K8s 支持边缘计算,而且 KubeSphere 界面也没有边缘节点资源使用率等监控信息的显示。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240407141223475.png)
本文基于 KubeSphere 和 KubeEdge 构建云边一体化计算平台,通过 Prometheus 来监控 Nvidia Jetson 边缘设备状态,实现 KubeSphere 在边缘节点的可观测性。
| 组件 | 版本 |
| ----------- | ---------------------------------- |
| KubeSphere | 3.4.1 |
| containerd | 1.7.2 |
| K8s | 1.26.0 |
| KubeEdge | 1.15.1 |
| Jetson 型号 | NVIDIA Jetson Xavier NX (16GB ram) |
| Jtop | 4.2.7 |
| JetPack | 5.1.3-b29 |
| Docker | 24.0.5 |
## 部署 K8s 环境
参考 [KubeSphere 部署文档](https://kubesphere.io/zh/docs/v3.4/quick-start/all-in-one-on-linux/)。通过 KubeKey 可以快速部署一套 K8s 集群。
```
// all in one 方式部署一台 单 master 的 k8s 集群
./kk create cluster --with-kubernetes v1.26.0 --with-kubesphere v3.4.1 --container-manager containerd
```
## 部署 KubeEdge 环境
参考 [在 KubeSphere 上部署最新版的 KubeEdge](https://zhuyaguang.github.io/kubeedge-install/),部署 KubeEdge。
### 开启边缘节点日志查询功能
1. vim /etc/kubeedge/config/edgecore.yaml
2. enable=true
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20231226105650084.png)
开启后,可以方便查询 pod 日志,定位问题。
## 修改 KubeSphere 配置
### 开启 KubeEdge 边缘节点插件
1. 修改 configmap--ClusterConfiguration
![](https://pek3b.qingstor.com/kubesphere-community/images/1710467730006-6c1d70a7-23e5-4e3a-89b3-b0ad8bf39673.png)
2. advertiseAddress 设置为 cloudhub 所在的物理机地址
![](https://pek3b.qingstor.com/kubesphere-community/images/1710467882107-c44e734b-245d-446b-8564-f8830e5db478.png)
KubeSphere 开启边缘节点文档链接https://www.kubesphere.io/zh/docs/v3.3/pluggable-components/kubeedge/。
> 修改完发现可以显示边缘节点,但是没有 CPU 和 内存信息,发现边缘节点没有 node-exporter 这个 pod。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240329112326949.png)
### 修改 node-exporter 亲和性
`kubectl get ds -n kubesphere-monitoring-system` 发现不会部署到边缘节点上。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240329135414326.png)
修改为:
```yaml
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-role.kubernetes.io/edgetest -- 修改这里,让亲和性失效
operator: DoesNotExist
```
node-exporter 是部署在边缘节点上了,但是 pods 起不来。
通过kubectl edit 该失败的 pod我们发现 node-exporter 这个pod 里面有两个容器,其中 kube-rbac-proxy 这个容器启动失败。看这个容器的日志,发现是 kube-rbac-proxy 想要获取 `KUBERNETES_SERVICE_HOST``KUBERNETES_SERVICE_PORT` 这两个环境变量,但是获取失败,所以容器启动失败。
在 K8s 的集群中,当创建 pod 时,会在 pod 中增加 `KUBERNETES_SERVICE_HOST``KUBERNETES_SERVICE_PORT` 这两个环境变量,用于 pod 内的进程对 kube-apiserver 的访问,但是在 KubeEdge 的 edge 节点上创建的 pod 中,这两个环境变量存在,但它是空的。
向 KubeEdge 的开发人员咨询,他们说会在 KubeEdge 1.17 版本上增加这两个环境变量的设置。参考如下:
[https://github.com/wackxu/kubeedge/blob/4a7c00783de9b11e56e56968b2cc950a7d32a403/docs/proposals/edge-pod-list-watch-natively.md](https://github.com/wackxu/kubeedge/blob/4a7c00783de9b11e56e56968b2cc950a7d32a403/docs/proposals/edge-pod-list-watch-natively.md)。
另一方面,推荐安装 EdgeMesh安装之后在 edge 的 pod 上就可以访问 `kubernetes.default.svc.cluster.local:443` 了。
### EdgeMesh 部署
1. 配置 cloudcore configmap
`kubectl edit cm cloudcore -n kubeedge` 设置 dynamicController=true.
修改完 重启 cloudcore `kubectl delete pod cloudcore-776ffcbbb9-s6ff8 -n kubeedge`
2. 配置 edgecore 模块,配置 metaServer=true 和 clusterDNS
```shell
$ vim /etc/kubeedge/config/edgecore.yaml
modules:
...
metaManager:
metaServer:
enable: true //配置这里
...
modules:
...
edged:
...
tailoredKubeletConfig:
...
clusterDNS: //配置这里
- 169.254.96.16
...
//重启edgecore
$ systemctl restart edgecore
```
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240329152628525.png)
修改完,验证是否修改成功。
```
$ curl 127.0.0.1:10550/api/v1/services
{"apiVersion":"v1","items":[{"apiVersion":"v1","kind":"Service","metadata":{"creationTimestamp":"2021-04-14T06:30:05Z","labels":{"component":"apiserver","provider":"kubernetes"},"name":"kubernetes","namespace":"default","resourceVersion":"147","selfLink":"default/services/kubernetes","uid":"55eeebea-08cf-4d1a-8b04-e85f8ae112a9"},"spec":{"clusterIP":"10.96.0.1","ports":[{"name":"https","port":443,"protocol":"TCP","targetPort":6443}],"sessionAffinity":"None","type":"ClusterIP"},"status":{"loadBalancer":{}}},{"apiVersion":"v1","kind":"Service","metadata":{"annotations":{"prometheus.io/port":"9153","prometheus.io/scrape":"true"},"creationTimestamp":"2021-04-14T06:30:07Z","labels":{"k8s-app":"kube-dns","kubernetes.io/cluster-service":"true","kubernetes.io/name":"KubeDNS"},"name":"kube-dns","namespace":"kube-system","resourceVersion":"203","selfLink":"kube-system/services/kube-dns","uid":"c221ac20-cbfa-406b-812a-c44b9d82d6dc"},"spec":{"clusterIP":"10.96.0.10","ports":[{"name":"dns","port":53,"protocol":"UDP","targetPort":53},{"name":"dns-tcp","port":53,"protocol":"TCP","targetPort":53},{"name":"metrics","port":9153,"protocol":"TCP","targetPort":9153}],"selector":{"k8s-app":"kube-dns"},"sessionAffinity":"None","type":"ClusterIP"},"status":{"loadBalancer":{}}}],"kind":"ServiceList","metadata":{"resourceVersion":"377360","selfLink":"/api/v1/services"}}
```
3. 安装 EdgeMesh
```
git clone https://github.com/kubeedge/edgemesh.git
cd edgemesh
kubectl apply -f build/crds/istio/
kubectl apply -f build/agent/resources/
```
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240329154436074.png)
### dnsPolicy
EdgeMesh 部署完成后edge 节点上的 node-exporter 中的两个境变量还是空的,也无法访问 `kubernetes.default.svc.cluster.local:443`,原因是该 pod 中 DNS 服务器配置错误,应该是 169.254.96.16 的,但是却是跟宿主机一样的 DNS 配置。
```shell
kubectl exec -it node-exporter-hcmfg -n kubesphere-monitoring-system -- sh
Defaulted container "node-exporter" out of: node-exporter, kube-rbac-proxy
$ cat /etc/resolv.conf
nameserver 127.0.0.53
```
将 dnsPolicy 修改为 ClusterFirstWithHostNet之后重启 node-exporterDNS 的配置正确。
`kubectl edit ds node-exporter -n kubesphere-monitoring-system`
dnsPolicy: ClusterFirstWithHostNet
hostNetwork: true
### 添加环境变量
vim /etc/systemd/system/edgecore.service
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240329155133337.png)
```
Environment=METASERVER_DUMMY_IP=kubernetes.default.svc.cluster.local
Environment=METASERVER_DUMMY_PORT=443
```
修改完重启 edgecore。
```
systemctl daemon-reload
systemctl restart edgecore
```
**node-exporter 变成 running**!!!!
在边缘节点 `curl http://127.0.0.1:9100/metrics` 可以发现采集到了边缘节点的数据。
最后我们可以将 KubeSphere 的 K8s 服务通过 NodePort 暴露出来。就可以在页面查看。
```yaml
apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/component: prometheus
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 2.39.1
name: prometheus-k8s-nodeport
namespace: kubesphere-monitoring-system
spec:
ports:
- port: 9090
targetPort: 9090
protocol: TCP
nodePort: 32143
selector:
app.kubernetes.io/component: prometheus
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
sessionAffinity: ClientIP
sessionAffinityConfig:
clientIP:
timeoutSeconds: 10800
type: NodePort
```
通过访问 master IP + 32143 端口,就可以访问边缘节点 node-exporter 数据。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240401145941476.png)
然后界面上也出现了 CPU 和内存的信息。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240401151605113.png)
搞定了 CPU 和内存,接下来就是 GPU 了。
## 监控 Jetson GPU 状态
### 安装 Jtop
首先 Jetson 是一个 ARM 设备,所以无法运行 `nvidia-smi` ,需要安装 Jtop。
```shell
sudo apt-get install python3-pip python3-dev -y
sudo -H pip3 install jetson-stats
sudo systemctl restart jtop.service
```
### 安装 Jetson GPU Exporter
参考[博客](https://blog.devops.dev/monitor-nvidia-jetson-gpu-82e256999840),制作 Jetson GPU Exporter 镜像,并且对应的 Grafana 仪表盘都有。
![](https://pek3b.qingstor.com/kubesphere-community/images/1_6KtoTzERNuM2tEvykpPcng.png)
> Dockerfile
```
FROM python:3-buster
RUN pip install --upgrade pip && pip install -U jetson-stats prometheus-client
RUN mkdir -p /root
COPY jetson_stats_prometheus_collector.py /root/jetson_stats_prometheus_collector.py
WORKDIR /root
USER root
RUN chmod +x /root/jetson_stats_prometheus_collector.py
ENTRYPOINT ["python3", "/root/jetson_stats_prometheus_collector.py"]
```
> jetson_stats_prometheus_collector.py 代码
```python
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import atexit
import os
from jtop import jtop, JtopException
from prometheus_client.core import InfoMetricFamily, GaugeMetricFamily, REGISTRY, CounterMetricFamily
from prometheus_client import make_wsgi_app
from wsgiref.simple_server import make_server
class CustomCollector(object):
def __init__(self):
atexit.register(self.cleanup)
self._jetson = jtop()
self._jetson.start()
def cleanup(self):
print("Closing jetson-stats connection...")
self._jetson.close()
def collect(self):
# spin传入true表示不会等待下一次数据读取完成
if self._jetson.ok(spin=True):
#
# Board info
#
i = InfoMetricFamily('gpu_info_board', 'Board sys info', labels=['board_info'])
i.add_metric(['info'], {
'machine': self._jetson.board['info']['machine'] if 'machine' in self._jetson.board.get('info', {}) else self._jetson.board['hardware']['Module'],
'jetpack': self._jetson.board['info']['jetpack'] if 'jetpack' in self._jetson.board.get('info', {}) else self._jetson.board['hardware']['Jetpack'],
'l4t': self._jetson.board['info']['L4T'] if 'L4T' in self._jetson.board.get('info', {}) else self._jetson.board['hardware']['L4T']
})
yield i
i = InfoMetricFamily('gpu_info_hardware', 'Board hardware info', labels=['board_hw'])
i.add_metric(['hardware'], {
'codename': self._jetson.board['hardware'].get('Codename', self._jetson.board['hardware'].get('CODENAME', 'unknown')),
'soc': self._jetson.board['hardware'].get('SoC', self._jetson.board['hardware'].get('SOC', 'unknown')),
'module': self._jetson.board['hardware'].get('P-Number', self._jetson.board['hardware'].get('MODULE', 'unknown')),
'board': self._jetson.board['hardware'].get('699-level Part Number', self._jetson.board['hardware'].get('BOARD', 'unknown')),
'cuda_arch_bin': self._jetson.board['hardware'].get('CUDA Arch BIN', self._jetson.board['hardware'].get('CUDA_ARCH_BIN', 'unknown')),
'serial_number': self._jetson.board['hardware'].get('Serial Number', self._jetson.board['hardware'].get('SERIAL_NUMBER', 'unknown')),
})
yield i
#
# NV power mode
#
i = InfoMetricFamily('gpu_nvpmode', 'NV power mode', labels=['nvpmode'])
i.add_metric(['mode'], {'mode': self._jetson.nvpmodel.name})
yield i
#
# System uptime
#
g = GaugeMetricFamily('gpu_uptime', 'System uptime', labels=['uptime'])
days = self._jetson.uptime.days
seconds = self._jetson.uptime.seconds
hours = seconds//3600
minutes = (seconds//60) % 60
g.add_metric(['days'], days)
g.add_metric(['hours'], hours)
g.add_metric(['minutes'], minutes)
yield g
#
# CPU usage
#
g = GaugeMetricFamily('gpu_usage_cpu', 'CPU % schedutil', labels=['cpu'])
g.add_metric(['cpu_1'], self._jetson.stats['CPU1'] if ('CPU1' in self._jetson.stats and isinstance(self._jetson.stats['CPU1'], int)) else 0)
g.add_metric(['cpu_2'], self._jetson.stats['CPU2'] if ('CPU2' in self._jetson.stats and isinstance(self._jetson.stats['CPU2'], int)) else 0)
g.add_metric(['cpu_3'], self._jetson.stats['CPU3'] if ('CPU3' in self._jetson.stats and isinstance(self._jetson.stats['CPU3'], int)) else 0)
g.add_metric(['cpu_4'], self._jetson.stats['CPU4'] if ('CPU4' in self._jetson.stats and isinstance(self._jetson.stats['CPU4'], int)) else 0)
g.add_metric(['cpu_5'], self._jetson.stats['CPU5'] if ('CPU5' in self._jetson.stats and isinstance(self._jetson.stats['CPU5'], int)) else 0)
g.add_metric(['cpu_6'], self._jetson.stats['CPU6'] if ('CPU6' in self._jetson.stats and isinstance(self._jetson.stats['CPU6'], int)) else 0)
g.add_metric(['cpu_7'], self._jetson.stats['CPU7'] if ('CPU7' in self._jetson.stats and isinstance(self._jetson.stats['CPU7'], int)) else 0)
g.add_metric(['cpu_8'], self._jetson.stats['CPU8'] if ('CPU8' in self._jetson.stats and isinstance(self._jetson.stats['CPU8'], int)) else 0)
yield g
#
# GPU usage
#
g = GaugeMetricFamily('gpu_usage_gpu', 'GPU % schedutil', labels=['gpu'])
g.add_metric(['val'], self._jetson.stats['GPU'])
yield g
#
# Fan usage
#
g = GaugeMetricFamily('gpu_usage_fan', 'Fan usage', labels=['fan'])
g.add_metric(['speed'], self._jetson.fan.get('speed', self._jetson.fan.get('pwmfan', {'speed': [0] })['speed'][0]))
yield g
#
# Sensor temperatures
#
g = GaugeMetricFamily('gpu_temperatures', 'Sensor temperatures', labels=['temperature'])
keys = ['AO', 'GPU', 'Tdiode', 'AUX', 'CPU', 'thermal', 'Tboard']
for key in keys:
if key in self._jetson.temperature:
g.add_metric([key.lower()], self._jetson.temperature[key]['temp'] if isinstance(self._jetson.temperature[key], dict) else self._jetson.temperature.get(key, 0))
yield g
#
# Power
#
g = GaugeMetricFamily('gpu_usage_power', 'Power usage', labels=['power'])
if isinstance(self._jetson.power, dict):
g.add_metric(['cv'], self._jetson.power['rail']['VDD_CPU_CV']['avg'] if 'VDD_CPU_CV' in self._jetson.power['rail'] else self._jetson.power['rail'].get('CV', { 'avg': 0 }).get('avg'))
g.add_metric(['gpu'], self._jetson.power['rail']['VDD_GPU_SOC']['avg'] if 'VDD_GPU_SOC' in self._jetson.power['rail'] else self._jetson.power['rail'].get('GPU', { 'avg': 0 }).get('avg'))
g.add_metric(['sys5v'], self._jetson.power['rail']['VIN_SYS_5V0']['avg'] if 'VIN_SYS_5V0' in self._jetson.power['rail'] else self._jetson.power['rail'].get('SYS5V', { 'avg': 0 }).get('avg'))
if isinstance(self._jetson.power, tuple):
g.add_metric(['cv'], self._jetson.power[1]['CV']['cur'] if 'CV' in self._jetson.power[1] else 0)
g.add_metric(['gpu'], self._jetson.power[1]['GPU']['cur'] if 'GPU' in self._jetson.power[1] else 0)
g.add_metric(['sys5v'], self._jetson.power[1]['SYS5V']['cur'] if 'SYS5V' in self._jetson.power[1] else 0)
yield g
#
# Processes
#
try:
processes = self._jetson.processes
# key exists in dict
i = InfoMetricFamily('gpu_processes', 'Process usage', labels=['process'])
for index in range(len(processes)):
i.add_metric(['info'], {
'pid': str(processes[index][0]),
'user': processes[index][1],
'gpu': processes[index][2],
'type': processes[index][3],
'priority': str(processes[index][4]),
'state': processes[index][5],
'cpu': str(processes[index][6]),
'memory': str(processes[index][7]),
'gpu_memory': str(processes[index][8]),
'name': processes[index][9],
})
yield i
except AttributeError:
# key doesn't exist in dict
i = 0
if __name__ == '__main__':
port = os.environ.get('PORT', 9998)
REGISTRY.register(CustomCollector())
app = make_wsgi_app()
httpd = make_server('', int(port), app)
print('Serving on port: ', port)
try:
httpd.serve_forever()
except KeyboardInterrupt:
print('Goodbye!')
```
> 记得给 Jetson 的板子打标签,确保 GPU 的 Exporter 在 Jetson 上执行。否则在其他 node 上执行会因为采集不到数据而报错.
>
> kubectl label node edge-wpx machine.type=jetson
### 新建 KubeSphere 资源
新建 ServiceAccount、DaemonSet、Service、servicemonitor目的是将 jetson-exporter 采集到的数据提供给 KubeSphere 的 Prometheus。
```yaml
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 1.0.0
name: jetson-exporter
namespace: kubesphere-monitoring-system
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 1.0.0
name: jetson-exporter
namespace: kubesphere-monitoring-system
spec:
revisionHistoryLimit: 10
selector:
matchLabels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
template:
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 1.0.0
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-role.kubernetes.io/edge
operator: Exists
containers:
- image: jetson-status-exporter:v1
imagePullPolicy: IfNotPresent
name: jetson-exporter
resources:
limits:
cpu: "1"
memory: 500Mi
requests:
cpu: 102m
memory: 180Mi
ports:
- containerPort: 9998
hostPort: 9998
name: http
protocol: TCP
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /run/jtop.sock
name: jtop-sock
readOnly: true
dnsPolicy: ClusterFirstWithHostNet
hostNetwork: true
hostPID: true
nodeSelector:
kubernetes.io/os: linux
machine.type: jetson
restartPolicy: Always
schedulerName: default-scheduler
serviceAccount: jetson-exporter
terminationGracePeriodSeconds: 30
tolerations:
- operator: Exists
volumes:
- hostPath:
path: /run/jtop.sock
type: Socket
name: jtop-sock
updateStrategy:
rollingUpdate:
maxSurge: 0
maxUnavailable: 1
type: RollingUpdate
---
apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 1.0.0
name: jetson-exporter
namespace: kubesphere-monitoring-system
spec:
clusterIP: None
clusterIPs:
- None
internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- name: http
port: 9998
protocol: TCP
targetPort: http
selector:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
sessionAffinity: None
type: ClusterIP
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/vendor: kubesphere
app.kubernetes.io/version: 1.0.0
name: jetson-exporter
namespace: kubesphere-monitoring-system
spec:
endpoints:
- bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
interval: 1m
port: http
relabelings:
- action: replace
regex: (.*)
replacement: $1
sourceLabels:
- __meta_kubernetes_pod_node_name
targetLabel: instance
- action: labeldrop
regex: (service|endpoint|container)
scheme: http
tlsConfig:
insecureSkipVerify: true
jobLabel: app.kubernetes.io/name
selector:
matchLabels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: jetson-exporter
app.kubernetes.io/part-of: kube-prometheus
```
部署完成后jetson-exporter pod running。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240401164222036.png)
重启 Prometheus pod重新加载配置后可以在 Prometheus 界面看到新增加的 GPU exporter 的 target。
```yaml
kubectl delete pod prometheus-k8s-0 -n kubesphere-monitoring-system
```
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240401164550474.png)
### 在 KubeSphere 前端,查看 GPU 监控数据
前端需要修改 KubeSphere 的 console 的代码,这里属于前端内容,这里就不详细说明了。
其次将 Prometheus 的 SVC 端口暴露出来,通过 nodeport 的方式将 Prometheus 的端口暴露出来,前端通过 http 接口来查询 GPU 的状态。
```yaml
apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/component: prometheus
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 2.39.1
name: prometheus-k8s-nodeport
namespace: kubesphere-monitoring-system
spec:
ports:
- port: 9090
targetPort: 9090
protocol: TCP
nodePort: 32143
selector:
app.kubernetes.io/component: prometheus
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
sessionAffinity: ClientIP
sessionAffinityConfig:
clientIP:
timeoutSeconds: 10800
type: NodePort
```
> http 接口
```
查询瞬时值:
get http://masterip:32143/api/v1/query?query=gpu_info_board_info&time=1711431293.686
get http://masterip:32143/api/v1/query?query=gpu_info_hardware_info&time=1711431590.574
get http://masterip:32143/api/v1/query?query=gpu_usage_gpu&time=1711431590.574
其中query为查询字段名time是查询的时间
查询某个时间段的采集值:
get http://10.11.140.87:32143/api/v1/query_range?query=gpu_usage_gpu&start=1711428221.998&end=1711431821.998&step=14
其中query为查询字段名start和end是起始结束时间step是间隔时间
```
这样就成功在 KubeSphere监控 KubeEdge 边缘节点 Jetson 的 GPU 状态了。
![](https://pek3b.qingstor.com/kubesphere-community/images/image-20240401165457482.png)
## 总结
基于 KubeEdge我们在 KubeSphere 的前端界面上实现了边缘设备的可观测性,包括 GPU 信息的可观测性。
对于边缘节点 CPU、内存状态的监控首先修改亲和性让 KubeSphere 自带的 node-exporter 能够采集边缘节点监控数据,接下来利用 KubeEdge 的 EdgeMesh 将采集的数据提供给 KubeSphere 的 Prometheus。这样就实现了 CPU、内存信息的监控。
对于边缘节点 GPU 状态的监控,安装 jtop 获取 GPU 使用率、温度等数据,然后开发 Jetson GPU Exporter将 jtop 获取的信息发送给 KubeSphere 的 Prometheus通过修改 KubeSphere 前端 ks-console 的代码,在界面上通过 http 接口获取 Prometheus 数据,这样就实现了 GPU 使用率等信息监控。

View File

@ -26,7 +26,7 @@ KubeSphere 适用于多种场景,为企业提供容器化的环境,借助完
**故障隔离**:通常来说,多个小规模的集群比一个大规模的集群更容易隔离故障。当集群发生诸如服务中断、网络故障、资源不足引起的连锁反应等问题时,使用多个集群可以将故障隔离在特定的集群,不会向其他集群传播。
**业务隔离**Kubernetes 通过命名空间来隔离应用,但这仅是逻辑上的隔离,不同命名空间之间网络互通,依旧存在资源抢占的问题。要想实现更进一步的隔离,需要额外设置诸如网络隔离策略、资源限额等。多集群可以在物理上实现彻底隔离,安全性和可靠性相比使用命名空间隔离更高。例如企业内部不同部门部署各自独立的集群、使用多个集群来分别部署开发、测试和生环境等。
**业务隔离**Kubernetes 通过命名空间来隔离应用,但这仅是逻辑上的隔离,不同命名空间之间网络互通,依旧存在资源抢占的问题。要想实现更进一步的隔离,需要额外设置诸如网络隔离策略、资源限额等。多集群可以在物理上实现彻底隔离,安全性和可靠性相比使用命名空间隔离更高。例如企业内部不同部门部署各自独立的集群、使用多个集群来分别部署开发、测试和生环境等。
![流水线](/images/docs/v3.x/zh-cn/introduction/use-cases/流水线.png)
@ -40,7 +40,7 @@ Kubernetes 已经成为容器编排领域的事实标准,很多企业在不同
## 多维度监控
可观测性是运维团队日常工作中的重要一环,随着企业部署在云厂商平台上业务量的不断增加,运维团队所面临的压力与挑战也与日俱增。对于将业务跨云集群部署的企业来说,运维团队需要处理海量的数据以对各个 Kubernetes 集群进行监控与分析。此外,如何满足企业对自定义监控指标的需求也是急需解决的问题之一。
可观测性是运维团队日常工作中的重要一环,随着企业部署在云厂商平台上业务量的不断增加,运维团队所面临的压力与挑战也与日俱增。对于将业务跨云集群部署的企业来说,运维团队需要处理海量的数据以对各个 Kubernetes 集群进行监控与分析。此外,如何满足企业对自定义监控指标的需求也是急需解决的问题之一。
### 多维度集群监控

View File

@ -26,7 +26,7 @@ KubeSphere 适用于多种场景,为企业提供容器化的环境,借助完
**故障隔离**:通常来说,多个小规模的集群比一个大规模的集群更容易隔离故障。当集群发生诸如服务中断、网络故障、资源不足引起的连锁反应等问题时,使用多个集群可以将故障隔离在特定的集群,不会向其他集群传播。
**业务隔离**Kubernetes 通过命名空间来隔离应用,但这仅是逻辑上的隔离,不同命名空间之间网络互通,依旧存在资源抢占的问题。要想实现更进一步的隔离,需要额外设置诸如网络隔离策略、资源限额等。多集群可以在物理上实现彻底隔离,安全性和可靠性相比使用命名空间隔离更高。例如企业内部不同部门部署各自独立的集群、使用多个集群来分别部署开发、测试和生环境等。
**业务隔离**Kubernetes 通过命名空间来隔离应用,但这仅是逻辑上的隔离,不同命名空间之间网络互通,依旧存在资源抢占的问题。要想实现更进一步的隔离,需要额外设置诸如网络隔离策略、资源限额等。多集群可以在物理上实现彻底隔离,安全性和可靠性相比使用命名空间隔离更高。例如企业内部不同部门部署各自独立的集群、使用多个集群来分别部署开发、测试和生环境等。
![流水线](/images/docs/v3.x/zh-cn/introduction/use-cases/流水线.png)
@ -40,7 +40,7 @@ Kubernetes 已经成为容器编排领域的事实标准,很多企业在不同
## 多维度监控
可观测性是运维团队日常工作中的重要一环,随着企业部署在云厂商平台上业务量的不断增加,运维团队所面临的压力与挑战也与日俱增。对于将业务跨云集群部署的企业来说,运维团队需要处理海量的数据以对各个 Kubernetes 集群进行监控与分析。此外,如何满足企业对自定义监控指标的需求也是急需解决的问题之一。
可观测性是运维团队日常工作中的重要一环,随着企业部署在云厂商平台上业务量的不断增加,运维团队所面临的压力与挑战也与日俱增。对于将业务跨云集群部署的企业来说,运维团队需要处理海量的数据以对各个 Kubernetes 集群进行监控与分析。此外,如何满足企业对自定义监控指标的需求也是急需解决的问题之一。
### 多维度集群监控