mirror of
https://github.com/Tencent/Metis.git
synced 2025-12-25 19:52:49 +00:00
164 lines
6.4 KiB
Python
164 lines
6.4 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 -*-
|
|
"""
|
|
Tencent is pleased to support the open source community by making Metis available.
|
|
Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
|
|
Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
|
|
https://opensource.org/licenses/BSD-3-Clause
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
|
|
"""
|
|
|
|
import time
|
|
import os
|
|
import threading
|
|
from app.dao.time_series_detector import anomaly_op
|
|
from app.dao.time_series_detector import sample_op
|
|
from app.dao.time_series_detector import train_op
|
|
from time_series_detector.algorithm import xgboosting
|
|
from time_series_detector import detect
|
|
from app.common.errorcode import *
|
|
from app.common.common import *
|
|
from time_series_detector.common.tsd_errorcode import *
|
|
MODEL_PATH = os.path.join(os.path.dirname(__file__), './model/')
|
|
|
|
|
|
class DetectService(object):
|
|
|
|
def __init__(self):
|
|
self.sample_op_obj = sample_op.SampleOperation()
|
|
self.anomaly_op_obj = anomaly_op.AbnormalOperation()
|
|
self.detect_obj = detect.Detect()
|
|
|
|
def __generate_model(self, data, task_id):
|
|
"""
|
|
Start train a model
|
|
|
|
:param data: Training dataset.
|
|
:param task_id: The id of the training task.
|
|
"""
|
|
xgb_obj = xgboosting.XGBoosting()
|
|
# pylint: disable=unused-variable
|
|
ret_code, ret_data = xgb_obj.xgb_train(data, task_id)
|
|
current_timestamp = int(time.time())
|
|
train_op_obj = train_op.TrainOperation()
|
|
if ret_code == 0:
|
|
train_status = "complete"
|
|
params = {
|
|
"task_id": task_id,
|
|
"end_time": current_timestamp,
|
|
"status": train_status,
|
|
"model_name": task_id + "_model"
|
|
}
|
|
else:
|
|
train_status = "failed"
|
|
params = {
|
|
"task_id": task_id,
|
|
"end_time": current_timestamp,
|
|
"status": train_status,
|
|
"model_name": ""
|
|
}
|
|
train_op_obj.update_model_info(params)
|
|
|
|
def process_train(self, data):
|
|
"""
|
|
Start a process to train model
|
|
:param data: Training dataset.
|
|
"""
|
|
sample_params = {
|
|
"trainOrTest": data["trainOrTest"],
|
|
"positiveOrNegative": data["positiveOrNegative"],
|
|
"source": data["source"],
|
|
"beginTime": data["beginTime"],
|
|
"endTime": data["endTime"]
|
|
}
|
|
samples = self.sample_op_obj.sample_query_all(sample_params)
|
|
train_op_obj = train_op.TrainOperation()
|
|
samples_list = []
|
|
positive_count = 0
|
|
negative_count = 0
|
|
for index in samples:
|
|
samples_list.append({"flag": index["flag"], "data": map(int, index["data"].split(','))})
|
|
if index["flag"] == 1:
|
|
positive_count = positive_count + 1
|
|
else:
|
|
negative_count = negative_count + 1
|
|
task_id = str(int(round(time.time() * 1000)))
|
|
train_params = {
|
|
"begin_time": int(time.time()),
|
|
"end_time": int(time.time()),
|
|
"task_id": task_id,
|
|
"status": "running",
|
|
"source": data["source"],
|
|
"sample_num": len(samples_list),
|
|
"postive_sample_num": positive_count,
|
|
"negative_sample_num": negative_count
|
|
}
|
|
if positive_count == 0 or negative_count == 0:
|
|
return build_ret_data(LACK_SAMPLE, "")
|
|
train_op_obj.insert_train_info(train_params)
|
|
try:
|
|
t = threading.Thread(target=self.__generate_model, args=(samples_list, task_id, ))
|
|
t.setDaemon(False)
|
|
t.start()
|
|
except Exception:
|
|
train_status = "failed"
|
|
params = {
|
|
"task_id": task_id,
|
|
"end_time": int(time.time()),
|
|
"status": train_status,
|
|
"model_name": ""
|
|
}
|
|
train_op_obj.update_model_info(params)
|
|
return build_ret_data(OP_SUCCESS, "")
|
|
|
|
def __list_is_digit(self, data):
|
|
for index in data:
|
|
try:
|
|
float(index)
|
|
except ValueError:
|
|
return False
|
|
return True
|
|
|
|
def __check_param(self, data):
|
|
if ("viewName" not in data.keys()) or ("attrId" not in data.keys()) or ("attrName" not in data.keys()) or ("time" not in data.keys()) or ("dataC" not in data.keys()) or ("dataB" not in data.keys()) or ("dataA" not in data.keys()):
|
|
return CHECK_PARAM_FAILED, "missing parameter"
|
|
return OP_SUCCESS, ""
|
|
|
|
def value_predict(self, data):
|
|
ret_code, ret_data = self.__check_param(data)
|
|
if ret_code != OP_SUCCESS:
|
|
return build_ret_data(ret_code, ret_data)
|
|
ret_code, ret_data = self.detect_obj.value_predict(data)
|
|
if ret_code == TSD_OP_SUCCESS and ret_data["ret"] == 0:
|
|
anomaly_params = {
|
|
"view_id": data["viewId"],
|
|
"view_name": data["viewName"],
|
|
"attr_id": data["attrId"],
|
|
"attr_name": data["attrName"],
|
|
"time": data["time"],
|
|
"data_c": data["dataC"],
|
|
"data_b": data["dataB"],
|
|
"data_a": data["dataA"]
|
|
}
|
|
self.anomaly_op_obj.insert_anomaly(anomaly_params)
|
|
return build_ret_data(ret_code, ret_data)
|
|
|
|
def rate_predict(self, data):
|
|
ret_code, ret_data = self.__check_param(data)
|
|
if ret_code != OP_SUCCESS:
|
|
return build_ret_data(ret_code, ret_data)
|
|
ret_data, ret_data = self.detect_obj.rate_predict(data)
|
|
if ret_code == TSD_OP_SUCCESS and ret_data["ret"] == 0:
|
|
anomaly_params = {
|
|
"view_id": data["viewId"],
|
|
"view_name": data["viewName"],
|
|
"attr_id": data["attrId"],
|
|
"attr_name": data["attrName"],
|
|
"time": data["time"],
|
|
"data_c": data["dataC"],
|
|
"data_b": data["dataB"],
|
|
"data_a": data["dataA"]
|
|
}
|
|
self.anomaly_op_obj.insert_anomaly(anomaly_params)
|
|
return build_ret_data(OP_SUCCESS, ret_data)
|