mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-27 20:42:52 +00:00
92 lines
2.8 KiB
Python
92 lines
2.8 KiB
Python
# coding=utf-8
|
|
import threading
|
|
from typing import Dict, Optional, List, Any
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from models_provider.base_model_provider import MaxKBBaseModel
|
|
|
|
|
|
class XinferenceEmbedding(MaxKBBaseModel, Embeddings):
|
|
client: Any
|
|
server_url: Optional[str]
|
|
"""URL of the xinference server"""
|
|
model_uid: Optional[str]
|
|
"""UID of the launched model"""
|
|
|
|
@staticmethod
|
|
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
|
return XinferenceEmbedding(
|
|
model_uid=model_name,
|
|
server_url=model_credential.get('api_base'),
|
|
api_key=model_credential.get('api_key'),
|
|
)
|
|
|
|
def down_model(self):
|
|
self.client.launch_model(model_name=self.model_uid, model_type="embedding")
|
|
|
|
def start_down_model_thread(self):
|
|
thread = threading.Thread(target=self.down_model)
|
|
thread.daemon = True
|
|
thread.start()
|
|
|
|
def __init__(
|
|
self, server_url: Optional[str] = None, model_uid: Optional[str] = None,
|
|
api_key: Optional[str] = None
|
|
):
|
|
try:
|
|
from xinference.client import RESTfulClient
|
|
except ImportError:
|
|
try:
|
|
from xinference_client import RESTfulClient
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import RESTfulClient from xinference. Please install it"
|
|
" with `pip install xinference` or `pip install xinference_client`."
|
|
) from e
|
|
|
|
if server_url is None:
|
|
raise ValueError("Please provide server URL")
|
|
|
|
if model_uid is None:
|
|
raise ValueError("Please provide the model UID")
|
|
|
|
self.server_url = server_url
|
|
|
|
self.model_uid = model_uid
|
|
|
|
self.api_key = api_key
|
|
|
|
self.client = RESTfulClient(server_url, api_key)
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed a list of documents using Xinference.
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
|
|
model = self.client.get_model(self.model_uid)
|
|
|
|
embeddings = [
|
|
model.create_embedding(text)["data"][0]["embedding"] for text in texts
|
|
]
|
|
return [list(map(float, e)) for e in embeddings]
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query of documents using Xinference.
|
|
Args:
|
|
text: The text to embed.
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
|
|
model = self.client.get_model(self.model_uid)
|
|
|
|
embedding_res = model.create_embedding(text)
|
|
|
|
embedding = embedding_res["data"][0]["embedding"]
|
|
|
|
return list(map(float, embedding))
|