MaxKB/apps/knowledge/serializers/paragraph.py

558 lines
30 KiB
Python

# coding=utf-8
from typing import Dict
import uuid_utils.compat as uuid
from celery_once import AlreadyQueued
from django.db import transaction
from django.db.models import QuerySet, Count
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from common.db.search import page_search
from common.event import ListenerManagement
from common.exception.app_exception import AppApiException
from common.utils.common import post
from knowledge.models import Paragraph, Problem, Document, ProblemParagraphMapping, SourceType, TaskType, State, \
Knowledge
from knowledge.serializers.common import ProblemParagraphObject, ProblemParagraphManage, \
get_embedding_model_id_by_knowledge_id, update_document_char_length, BatchSerializer
from knowledge.serializers.problem import ProblemInstanceSerializer, ProblemSerializer, ProblemSerializers
from knowledge.task.embedding import embedding_by_paragraph, enable_embedding_by_paragraph, \
disable_embedding_by_paragraph, \
delete_embedding_by_paragraph, embedding_by_problem as embedding_by_problem_task, delete_embedding_by_paragraph_ids, \
embedding_by_problem, delete_embedding_by_source, update_embedding_document_id
from knowledge.task.generate import generate_related_by_paragraph_id_list
class ParagraphSerializer(serializers.ModelSerializer):
class Meta:
model = Paragraph
fields = ['id', 'content', 'is_active', 'document_id', 'title', 'create_time', 'update_time']
class ParagraphInstanceSerializer(serializers.Serializer):
"""
段落实例对象
"""
content = serializers.CharField(required=True, label=_('content'), max_length=102400, min_length=1, allow_null=True,
allow_blank=True)
title = serializers.CharField(required=False, max_length=256, label=_('section title'), allow_null=True,
allow_blank=True)
problem_list = ProblemInstanceSerializer(required=False, many=True)
is_active = serializers.BooleanField(required=False, label=_('Is active'))
class EditParagraphSerializers(serializers.Serializer):
title = serializers.CharField(required=False, max_length=256, label=_('section title'), allow_null=True,
allow_blank=True)
content = serializers.CharField(required=False, max_length=102400, allow_null=True, allow_blank=True,
label=_('section title'))
problem_list = ProblemInstanceSerializer(required=False, many=True)
class ParagraphBatchGenerateRelatedSerializer(serializers.Serializer):
paragraph_id_list = serializers.ListField(required=True, label=_('paragraph id list'),
child=serializers.UUIDField(required=True, label=_('paragraph id')))
model_id = serializers.UUIDField(required=True, label=_('model id'))
prompt = serializers.CharField(required=True, label=_('prompt'), max_length=102400, allow_null=True,
allow_blank=True)
document_id = serializers.UUIDField(required=True, label=_('document id'))
class ParagraphSerializers(serializers.Serializer):
title = serializers.CharField(required=False, max_length=256, label=_('section title'), allow_null=True,
allow_blank=True)
content = serializers.CharField(required=True, max_length=102400, label=_('section title'))
class Problem(serializers.Serializer):
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
document_id = serializers.UUIDField(required=True, label=_('document id'))
paragraph_id = serializers.UUIDField(required=True, label=_('paragraph id'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if not QuerySet(Paragraph).filter(id=self.data.get('paragraph_id')).exists():
raise AppApiException(500, _('Paragraph id does not exist'))
def list(self, with_valid=False):
"""
获取问题列表
:param with_valid: 是否校验
:return: 问题列表
"""
if with_valid:
self.is_valid(raise_exception=True)
problem_paragraph_mapping = QuerySet(ProblemParagraphMapping).filter(
knowledge_id=self.data.get("knowledge_id"),
paragraph_id=self.data.get(
'paragraph_id'))
return [ProblemSerializer(row).data for row in
QuerySet(Problem).filter(id__in=[row.problem_id for row in problem_paragraph_mapping])]
@transaction.atomic
def save(self, instance: Dict, with_valid=True, with_embedding=True, embedding_by_problem=None):
if with_valid:
self.is_valid()
ProblemInstanceSerializer(data=instance).is_valid(raise_exception=True)
problem = QuerySet(Problem).filter(knowledge_id=self.data.get('knowledge_id'),
content=instance.get('content')).first()
if problem is None:
problem = Problem(id=uuid.uuid7(), knowledge_id=self.data.get('knowledge_id'),
content=instance.get('content'))
problem.save()
if QuerySet(ProblemParagraphMapping).filter(knowledge_id=self.data.get('knowledge_id'),
problem_id=problem.id,
paragraph_id=self.data.get('paragraph_id')).exists():
raise AppApiException(500, _('Already associated, please do not associate again'))
problem_paragraph_mapping = ProblemParagraphMapping(
id=uuid.uuid7(),
problem_id=problem.id,
document_id=self.data.get('document_id'),
paragraph_id=self.data.get('paragraph_id'),
knowledge_id=self.data.get('knowledge_id')
)
problem_paragraph_mapping.save()
model_id = get_embedding_model_id_by_knowledge_id(self.data.get('knowledge_id'))
if with_embedding:
embedding_by_problem_task({
'text': problem.content,
'is_active': True,
'source_type': SourceType.PROBLEM,
'source_id': problem_paragraph_mapping.id,
'document_id': self.data.get('document_id'),
'paragraph_id': self.data.get('paragraph_id'),
'knowledge_id': self.data.get('knowledge_id'),
}, model_id)
return ProblemSerializers.Operate(
data={'knowledge_id': self.data.get('knowledge_id'), 'problem_id': problem.id}
).one(with_valid=True)
class Operate(serializers.Serializer):
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
# 段落id
paragraph_id = serializers.UUIDField(required=True, label=_('paragraph id'))
# 知识库id
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
# 文档id
document_id = serializers.UUIDField(required=True, label=_('document id'))
def is_valid(self, *, raise_exception=True):
super().is_valid(raise_exception=True)
if not QuerySet(Paragraph).filter(id=self.data.get('paragraph_id')).exists():
raise AppApiException(500, _('Paragraph id does not exist'))
@staticmethod
def post_embedding(paragraph, instance, knowledge_id):
if 'is_active' in instance and instance.get('is_active') is not None:
(enable_embedding_by_paragraph if instance.get(
'is_active') else disable_embedding_by_paragraph)(paragraph.get('id'))
else:
model_id = get_embedding_model_id_by_knowledge_id(knowledge_id)
embedding_by_paragraph(paragraph.get('id'), model_id)
return paragraph
@post(post_embedding)
@transaction.atomic
def edit(self, instance: Dict):
self.is_valid()
EditParagraphSerializers(data=instance).is_valid(raise_exception=True)
_paragraph = QuerySet(Paragraph).get(id=self.data.get("paragraph_id"))
update_keys = ['title', 'content', 'is_active']
for update_key in update_keys:
if update_key in instance and instance.get(update_key) is not None:
_paragraph.__setattr__(update_key, instance.get(update_key))
if 'problem_list' in instance:
update_problem_list = list(
filter(lambda row: 'id' in row and row.get('id') is not None, instance.get('problem_list')))
create_problem_list = list(filter(lambda row: row.get('id') is None, instance.get('problem_list')))
# 问题集合
problem_list = QuerySet(Problem).filter(paragraph_id=self.data.get("paragraph_id"))
# 校验前端 携带过来的id
for update_problem in update_problem_list:
if not set([str(row.id) for row in problem_list]).__contains__(update_problem.get('id')):
raise AppApiException(500, _('Problem id does not exist'))
# 对比需要删除的问题
delete_problem_list = list(filter(
lambda row: not [str(update_row.get('id')) for update_row in update_problem_list].__contains__(
str(row.id)), problem_list)) if len(update_problem_list) > 0 else []
# 删除问题
QuerySet(Problem).filter(id__in=[row.id for row in delete_problem_list]).delete() if len(
delete_problem_list) > 0 else None
# 插入新的问题
QuerySet(Problem).bulk_create([
Problem(
id=uuid.uuid7(),
content=p.get('content'),
paragraph_id=self.data.get('paragraph_id'),
knowledge_id=self.data.get('knowledge_id'),
document_id=self.data.get('document_id')
) for p in create_problem_list
]) if len(create_problem_list) else None
# 修改问题集合
QuerySet(Problem).bulk_update([
Problem(
id=row.get('id'),
content=row.get('content')
) for row in update_problem_list], ['content']
) if len(update_problem_list) > 0 else None
_paragraph.save()
update_document_char_length(self.data.get('document_id'))
return self.one(), instance, self.data.get('knowledge_id')
def get_problem_list(self):
ProblemParagraphMapping(ProblemParagraphMapping)
problem_paragraph_mapping = QuerySet(ProblemParagraphMapping).filter(
paragraph_id=self.data.get("paragraph_id"))
if len(problem_paragraph_mapping) > 0:
return [ProblemSerializer(problem).data for problem in
QuerySet(Problem).filter(id__in=[ppm.problem_id for ppm in problem_paragraph_mapping])]
return []
def one(self, with_valid=False):
if with_valid:
self.is_valid(raise_exception=True)
return {**ParagraphSerializer(QuerySet(model=Paragraph).get(id=self.data.get('paragraph_id'))).data,
'problem_list': self.get_problem_list()}
def delete(self, with_valid=False):
if with_valid:
self.is_valid(raise_exception=True)
paragraph_id = self.data.get('paragraph_id')
Paragraph.objects.filter(id=paragraph_id).delete()
delete_problems_and_mappings([paragraph_id])
update_document_char_length(self.data.get('document_id'))
delete_embedding_by_paragraph(paragraph_id)
class Create(serializers.Serializer):
workspace_id = serializers.CharField(required=True, label='Workspace ID')
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
document_id = serializers.UUIDField(required=True, label=_('document id'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if not QuerySet(Document).filter(id=self.data.get('document_id'),
knowledge_id=self.data.get('knowledge_id')).exists():
raise AppApiException(500, _('The document id is incorrect'))
def save(self, instance: Dict, with_valid=True, with_embedding=True):
if with_valid:
ParagraphSerializers(data=instance).is_valid(raise_exception=True)
self.is_valid()
knowledge_id = self.data.get("knowledge_id")
document_id = self.data.get('document_id')
paragraph_problem_model = self.get_paragraph_problem_model(knowledge_id, document_id, instance)
paragraph = paragraph_problem_model.get('paragraph')
problem_paragraph_object_list = paragraph_problem_model.get('problem_paragraph_object_list')
problem_model_list, problem_paragraph_mapping_list = (
ProblemParagraphManage(problem_paragraph_object_list, knowledge_id)
.to_problem_model_list())
# 插入段落
paragraph_problem_model.get('paragraph').save()
# 插入問題
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
# 插入问题关联关系
QuerySet(ProblemParagraphMapping).bulk_create(
problem_paragraph_mapping_list
) if len(problem_paragraph_mapping_list) > 0 else None
# 修改长度
update_document_char_length(document_id)
if with_embedding:
model_id = get_embedding_model_id_by_knowledge_id(knowledge_id)
embedding_by_paragraph(str(paragraph.id), model_id)
return ParagraphSerializers.Operate(
data={
'paragraph_id': str(paragraph.id),
'knowledge_id': knowledge_id,
'document_id': document_id,
'workspace_id': self.data.get('workspace_id')
}
).one(with_valid=True)
@staticmethod
def get_paragraph_problem_model(knowledge_id: str, document_id: str, instance: Dict):
paragraph = Paragraph(
id=uuid.uuid7(),
document_id=document_id,
content=instance.get("content"),
knowledge_id=knowledge_id,
title=instance.get("title") if 'title' in instance else ''
)
problem_paragraph_object_list = [ProblemParagraphObject(
knowledge_id, document_id, str(paragraph.id), problem.get('content')
) for problem in (instance.get('problem_list') if 'problem_list' in instance else [])]
return {
'paragraph': paragraph,
'problem_paragraph_object_list': problem_paragraph_object_list
}
@staticmethod
def or_get(exists_problem_list, content, knowledge_id):
exists = [row for row in exists_problem_list if row.content == content]
if len(exists) > 0:
return exists[0]
else:
return Problem(id=uuid.uuid7(), content=content, knowledge_id=knowledge_id)
class Query(serializers.Serializer):
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
document_id = serializers.UUIDField(required=True, label=_('document id'))
title = serializers.CharField(required=False, label=_('section title'))
content = serializers.CharField(required=False)
def get_query_set(self):
query_set = QuerySet(model=Paragraph)
query_set = query_set.filter(
**{'knowledge_id': self.data.get('knowledge_id'), 'document_id': self.data.get("document_id")})
if 'title' in self.data:
query_set = query_set.filter(
**{'title__icontains': self.data.get('title')})
if 'content' in self.data:
query_set = query_set.filter(**{'content__icontains': self.data.get('content')})
query_set = query_set.order_by('create_time', 'id')
return query_set
def list(self):
return list(map(lambda row: ParagraphSerializer(row).data, self.get_query_set()))
def page(self, current_page, page_size):
query_set = self.get_query_set()
return page_search(current_page, page_size, query_set, lambda row: ParagraphSerializer(row).data)
class Association(serializers.Serializer):
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
problem_id = serializers.UUIDField(required=True, label=_('problem id'))
document_id = serializers.UUIDField(required=True, label=_('document id'))
paragraph_id = serializers.UUIDField(required=True, label=_('paragraph id'))
def is_valid(self, *, raise_exception=True):
super().is_valid(raise_exception=True)
knowledge_id = self.data.get('knowledge_id')
paragraph_id = self.data.get('paragraph_id')
problem_id = self.data.get("problem_id")
if not QuerySet(Paragraph).filter(knowledge_id=knowledge_id, id=paragraph_id).exists():
raise AppApiException(500, _('Paragraph does not exist'))
if not QuerySet(Problem).filter(knowledge_id=knowledge_id, id=problem_id).exists():
raise AppApiException(500, _('Problem does not exist'))
def association(self, with_valid=True, with_embedding=True):
if with_valid:
self.is_valid(raise_exception=True)
problem = QuerySet(Problem).filter(id=self.data.get("problem_id")).first()
problem_paragraph_mapping = ProblemParagraphMapping(id=uuid.uuid7(),
document_id=self.data.get('document_id'),
paragraph_id=self.data.get('paragraph_id'),
knowledge_id=self.data.get('knowledge_id'),
problem_id=problem.id)
problem_paragraph_mapping.save()
if with_embedding:
model_id = get_embedding_model_id_by_knowledge_id(self.data.get('knowledge_id'))
embedding_by_problem({
'text': problem.content,
'is_active': True,
'source_type': SourceType.PROBLEM,
'source_id': problem_paragraph_mapping.id,
'document_id': self.data.get('document_id'),
'paragraph_id': self.data.get('paragraph_id'),
'knowledge_id': self.data.get('knowledge_id'),
}, model_id)
def un_association(self, with_valid=True):
if with_valid:
self.is_valid(raise_exception=True)
problem_paragraph_mapping = QuerySet(ProblemParagraphMapping).filter(
paragraph_id=self.data.get('paragraph_id'),
knowledge_id=self.data.get('knowledge_id'),
problem_id=self.data.get(
'problem_id')).first()
problem_paragraph_mapping_id = problem_paragraph_mapping.id
problem_paragraph_mapping.delete()
delete_embedding_by_source(problem_paragraph_mapping_id)
return True
class Batch(serializers.Serializer):
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
document_id = serializers.UUIDField(required=True, label=_('document id'))
@transaction.atomic
def batch_delete(self, instance: Dict, with_valid=True):
if with_valid:
BatchSerializer(data=instance).is_valid(model=Paragraph, raise_exception=True)
self.is_valid(raise_exception=True)
paragraph_id_list = instance.get("id_list")
QuerySet(Paragraph).filter(id__in=paragraph_id_list).delete()
delete_problems_and_mappings(paragraph_id_list)
update_document_char_length(self.data.get('document_id'))
# 删除向量库
delete_embedding_by_paragraph_ids(paragraph_id_list)
return True
def batch_generate_related(self, instance: Dict, with_valid=True):
if with_valid:
self.is_valid(raise_exception=True)
paragraph_id_list = instance.get("paragraph_id_list")
model_id = instance.get("model_id")
prompt = instance.get("prompt")
document_id = self.data.get('document_id')
ListenerManagement.update_status(
QuerySet(Document).filter(id=document_id),
TaskType.GENERATE_PROBLEM,
State.PENDING
)
ListenerManagement.update_status(
QuerySet(Paragraph).filter(id__in=paragraph_id_list),
TaskType.GENERATE_PROBLEM,
State.PENDING
)
ListenerManagement.get_aggregation_document_status(document_id)()
try:
generate_related_by_paragraph_id_list.delay(document_id, paragraph_id_list, model_id, prompt)
except AlreadyQueued as e:
raise AppApiException(500, _('The task is being executed, please do not send it again.'))
class Migrate(serializers.Serializer):
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
document_id = serializers.UUIDField(required=True, label=_('document id'))
target_knowledge_id = serializers.UUIDField(required=True, label=_('target knowledge id'))
target_document_id = serializers.UUIDField(required=True, label=_('target document id'))
paragraph_id_list = serializers.ListField(required=True, label=_('paragraph id list'),
child=serializers.UUIDField(required=True, label=_('paragraph id')))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
document_list = QuerySet(Document).filter(
id__in=[self.data.get('document_id'), self.data.get('target_document_id')])
document_id = self.data.get('document_id')
target_document_id = self.data.get('target_document_id')
if document_id == target_document_id:
raise AppApiException(5000, _('The document to be migrated is consistent with the target document'))
if len([document for document in document_list if str(document.id) == self.data.get('document_id')]) < 1:
raise AppApiException(5000, _('The document id does not exist [{document_id}]').format(
document_id=self.data.get('document_id')))
if len([document for document in document_list if
str(document.id) == self.data.get('target_document_id')]) < 1:
raise AppApiException(5000, _('The target document id does not exist [{document_id}]').format(
document_id=self.data.get('target_document_id')))
@transaction.atomic
def migrate(self, with_valid=True):
if with_valid:
self.is_valid(raise_exception=True)
knowledge_id = self.data.get('knowledge_id')
target_knowledge_id = self.data.get('target_knowledge_id')
document_id = self.data.get('document_id')
target_document_id = self.data.get('target_document_id')
paragraph_id_list = self.data.get('paragraph_id_list')
paragraph_list = QuerySet(Paragraph).filter(knowledge_id=knowledge_id, document_id=document_id,
id__in=paragraph_id_list)
problem_paragraph_mapping_list = QuerySet(ProblemParagraphMapping).filter(paragraph__in=paragraph_list)
# 同数据集迁移
if target_knowledge_id == knowledge_id:
if len(problem_paragraph_mapping_list):
problem_paragraph_mapping_list = [
self.update_problem_paragraph_mapping(target_document_id,
problem_paragraph_mapping) for problem_paragraph_mapping
in
problem_paragraph_mapping_list]
# 修改mapping
QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list,
['document_id'])
update_embedding_document_id([paragraph.id for paragraph in paragraph_list],
target_document_id, target_knowledge_id, None)
# 修改段落信息
paragraph_list.update(document_id=target_document_id)
# 不同数据集迁移
else:
problem_list = QuerySet(Problem).filter(
id__in=[problem_paragraph_mapping.problem_id for problem_paragraph_mapping in
problem_paragraph_mapping_list])
# 目标数据集问题
target_problem_list = list(
QuerySet(Problem).filter(content__in=[problem.content for problem in problem_list],
knowledge_id=target_knowledge_id))
target_handle_problem_list = [
self.get_target_knowledge_problem(target_knowledge_id, target_document_id,
problem_paragraph_mapping,
problem_list, target_problem_list) for
problem_paragraph_mapping
in
problem_paragraph_mapping_list]
create_problem_list = [problem for problem, is_create in target_handle_problem_list if
is_create is not None and is_create]
# 插入问题
QuerySet(Problem).bulk_create(create_problem_list)
# 修改mapping
QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list,
['problem_id', 'knowledge_id', 'document_id'])
target_knowledge = QuerySet(Knowledge).filter(id=target_knowledge_id).first()
knowledge = QuerySet(Knowledge).filter(id=knowledge_id).first()
embedding_model_id = None
if target_knowledge.embedding_model_id != knowledge.embedding_model_id:
embedding_model_id = str(target_knowledge.embedding_model_id)
pid_list = [paragraph.id for paragraph in paragraph_list]
# 修改段落信息
paragraph_list.update(knowledge_id=target_knowledge_id, document_id=target_document_id)
# 修改向量段落信息
update_embedding_document_id(pid_list, target_document_id, target_knowledge_id, embedding_model_id)
update_document_char_length(document_id)
update_document_char_length(target_document_id)
@staticmethod
def update_problem_paragraph_mapping(target_document_id: str, problem_paragraph_mapping):
problem_paragraph_mapping.document_id = target_document_id
return problem_paragraph_mapping
@staticmethod
def get_target_knowledge_problem(target_knowledge_id: str,
target_document_id: str,
problem_paragraph_mapping,
source_problem_list,
target_problem_list):
source_problem_list = [source_problem for source_problem in source_problem_list if
source_problem.id == problem_paragraph_mapping.problem_id]
problem_paragraph_mapping.knowledge_id = target_knowledge_id
problem_paragraph_mapping.document_id = target_document_id
if len(source_problem_list) > 0:
problem_content = source_problem_list[-1].content
problem_list = [problem for problem in target_problem_list if problem.content == problem_content]
if len(problem_list) > 0:
problem = problem_list[-1]
problem_paragraph_mapping.problem_id = problem.id
return problem, False
else:
problem = Problem(id=uuid.uuid1(), knowledge_id=target_knowledge_id, content=problem_content)
target_problem_list.append(problem)
problem_paragraph_mapping.problem_id = problem.id
return problem, True
return None
def delete_problems_and_mappings(paragraph_ids):
problem_paragraph_mappings = ProblemParagraphMapping.objects.filter(paragraph_id__in=paragraph_ids)
problem_ids = set(problem_paragraph_mappings.values_list('problem_id', flat=True))
if problem_ids:
problem_paragraph_mappings.delete()
remaining_problem_counts = ProblemParagraphMapping.objects.filter(problem_id__in=problem_ids).values(
'problem_id').annotate(count=Count('problem_id'))
remaining_problem_ids = {pc['problem_id'] for pc in remaining_problem_counts}
problem_ids_to_delete = problem_ids - remaining_problem_ids
Problem.objects.filter(id__in=problem_ids_to_delete).delete()
else:
problem_paragraph_mappings.delete()