mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 10:12:51 +00:00
1213 lines
63 KiB
Python
1213 lines
63 KiB
Python
import io
|
||
import logging
|
||
import os
|
||
import re
|
||
import traceback
|
||
from functools import reduce
|
||
from tempfile import TemporaryDirectory
|
||
from typing import Dict, List
|
||
|
||
import openpyxl
|
||
import uuid_utils.compat as uuid
|
||
from celery_once import AlreadyQueued
|
||
from django.core import validators
|
||
from django.db import transaction, models
|
||
from django.db.models import QuerySet
|
||
from django.db.models.aggregates import Max
|
||
from django.db.models.functions import Substr, Reverse
|
||
from django.http import HttpResponse
|
||
from django.utils.translation import gettext_lazy as _, gettext, get_language, to_locale
|
||
from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE
|
||
from rest_framework import serializers
|
||
from xlwt import Utils
|
||
|
||
from common.db.search import native_search, get_dynamics_model, native_page_search
|
||
from common.event import ListenerManagement
|
||
from common.event.common import work_thread_pool
|
||
from common.exception.app_exception import AppApiException
|
||
from common.handle.impl.qa.csv_parse_qa_handle import CsvParseQAHandle
|
||
from common.handle.impl.qa.xls_parse_qa_handle import XlsParseQAHandle
|
||
from common.handle.impl.qa.xlsx_parse_qa_handle import XlsxParseQAHandle
|
||
from common.handle.impl.qa.zip_parse_qa_handle import ZipParseQAHandle
|
||
from common.handle.impl.table.csv_parse_table_handle import CsvParseTableHandle
|
||
from common.handle.impl.table.xls_parse_table_handle import XlsParseTableHandle
|
||
from common.handle.impl.table.xlsx_parse_table_handle import XlsxParseTableHandle
|
||
from common.handle.impl.text.csv_split_handle import CsvSplitHandle
|
||
from common.handle.impl.text.doc_split_handle import DocSplitHandle
|
||
from common.handle.impl.text.html_split_handle import HTMLSplitHandle
|
||
from common.handle.impl.text.pdf_split_handle import PdfSplitHandle
|
||
from common.handle.impl.text.text_split_handle import TextSplitHandle
|
||
from common.handle.impl.text.xls_split_handle import XlsSplitHandle
|
||
from common.handle.impl.text.xlsx_split_handle import XlsxSplitHandle
|
||
from common.handle.impl.text.zip_split_handle import ZipSplitHandle
|
||
from common.utils.common import post, get_file_content, bulk_create_in_batches, parse_image
|
||
from common.utils.fork import Fork
|
||
from common.utils.logger import maxkb_logger
|
||
from common.utils.split_model import get_split_model, flat_map
|
||
from knowledge.models import Knowledge, Paragraph, Problem, Document, KnowledgeType, ProblemParagraphMapping, State, \
|
||
TaskType, File, FileSourceType
|
||
from knowledge.serializers.common import ProblemParagraphManage, BatchSerializer, \
|
||
get_embedding_model_id_by_knowledge_id, MetaSerializer, write_image, zip_dir
|
||
from knowledge.serializers.paragraph import ParagraphSerializers, ParagraphInstanceSerializer, \
|
||
delete_problems_and_mappings
|
||
from knowledge.task.embedding import embedding_by_document, delete_embedding_by_document_list, \
|
||
delete_embedding_by_document, delete_embedding_by_paragraph_ids, embedding_by_document_list, \
|
||
update_embedding_knowledge_id
|
||
from knowledge.task.generate import generate_related_by_document_id
|
||
from knowledge.task.sync import sync_web_document
|
||
from maxkb.const import PROJECT_DIR
|
||
from models_provider.models import Model
|
||
from oss.serializers.file import FileSerializer
|
||
|
||
default_split_handle = TextSplitHandle()
|
||
split_handles = [
|
||
HTMLSplitHandle(),
|
||
DocSplitHandle(),
|
||
PdfSplitHandle(),
|
||
XlsxSplitHandle(),
|
||
XlsSplitHandle(),
|
||
CsvSplitHandle(),
|
||
ZipSplitHandle(),
|
||
default_split_handle
|
||
]
|
||
|
||
parse_qa_handle_list = [XlsParseQAHandle(), CsvParseQAHandle(), XlsxParseQAHandle(), ZipParseQAHandle()]
|
||
parse_table_handle_list = [CsvParseTableHandle(), XlsParseTableHandle(), XlsxParseTableHandle()]
|
||
|
||
|
||
class BatchCancelInstanceSerializer(serializers.Serializer):
|
||
id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True), label=_('id list'))
|
||
type = serializers.IntegerField(required=True, label=_('task type'))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
_type = self.data.get('type')
|
||
try:
|
||
TaskType(_type)
|
||
except Exception as e:
|
||
raise AppApiException(500, _('task type not support'))
|
||
|
||
|
||
class DocumentInstanceSerializer(serializers.Serializer):
|
||
name = serializers.CharField(required=True, label=_('document name'), max_length=128, min_length=1)
|
||
paragraphs = ParagraphInstanceSerializer(required=False, many=True, allow_null=True)
|
||
source_file_id = serializers.UUIDField(required=False, allow_null=True, label=_('source file id'))
|
||
|
||
|
||
class CancelInstanceSerializer(serializers.Serializer):
|
||
type = serializers.IntegerField(required=True, label=_('task type'))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
_type = self.data.get('type')
|
||
try:
|
||
TaskType(_type)
|
||
except Exception as e:
|
||
raise AppApiException(500, _('task type not support'))
|
||
|
||
|
||
class DocumentEditInstanceSerializer(serializers.Serializer):
|
||
meta = serializers.DictField(required=False)
|
||
name = serializers.CharField(required=False, max_length=128, min_length=1, label=_('document name'))
|
||
hit_handling_method = serializers.CharField(required=False, validators=[
|
||
validators.RegexValidator(regex=re.compile("^optimization|directly_return$"),
|
||
message=_('The type only supports optimization|directly_return'),
|
||
code=500)
|
||
], label=_('hit handling method'))
|
||
|
||
directly_return_similarity = serializers.FloatField(required=False, max_value=2, min_value=0,
|
||
label=_('directly return similarity'))
|
||
|
||
is_active = serializers.BooleanField(required=False, label=_('document is active'))
|
||
|
||
@staticmethod
|
||
def get_meta_valid_map():
|
||
knowledge_meta_valid_map = {
|
||
KnowledgeType.BASE: MetaSerializer.BaseMeta,
|
||
KnowledgeType.WEB: MetaSerializer.WebMeta
|
||
}
|
||
return knowledge_meta_valid_map
|
||
|
||
def is_valid(self, *, document: Document = None):
|
||
super().is_valid(raise_exception=True)
|
||
if 'meta' in self.data and self.data.get('meta') is not None:
|
||
knowledge_meta_valid_map = self.get_meta_valid_map()
|
||
valid_class = knowledge_meta_valid_map.get(document.type)
|
||
valid_class(data=self.data.get('meta')).is_valid(raise_exception=True)
|
||
|
||
|
||
class DocumentSplitRequest(serializers.Serializer):
|
||
file = serializers.ListField(required=True, label=_('file list'))
|
||
limit = serializers.IntegerField(required=False, label=_('limit'))
|
||
patterns = serializers.ListField(
|
||
required=False,
|
||
child=serializers.CharField(required=True, label=_('patterns')),
|
||
label=_('patterns')
|
||
)
|
||
with_filter = serializers.BooleanField(required=False, label=_('Auto Clean'))
|
||
|
||
|
||
class DocumentWebInstanceSerializer(serializers.Serializer):
|
||
source_url_list = serializers.ListField(required=True, label=_('document url list'),
|
||
child=serializers.CharField(required=True, label=_('document url list')))
|
||
selector = serializers.CharField(required=False, allow_null=True, allow_blank=True, label=_('selector'))
|
||
|
||
|
||
class DocumentInstanceQASerializer(serializers.Serializer):
|
||
file_list = serializers.ListSerializer(required=True, label=_('file list'),
|
||
child=serializers.FileField(required=True, label=_('file')))
|
||
|
||
|
||
class DocumentInstanceTableSerializer(serializers.Serializer):
|
||
file_list = serializers.ListSerializer(required=True, label=_('file list'),
|
||
child=serializers.FileField(required=True, label=_('file')))
|
||
|
||
|
||
class DocumentRefreshSerializer(serializers.Serializer):
|
||
state_list = serializers.ListField(required=True, label=_('state list'))
|
||
|
||
|
||
class DocumentBatchRefreshSerializer(serializers.Serializer):
|
||
id_list = serializers.ListField(required=True, label=_('id list'))
|
||
state_list = serializers.ListField(required=True, label=_('state list'))
|
||
|
||
|
||
class DocumentBatchGenerateRelatedSerializer(serializers.Serializer):
|
||
document_id_list = serializers.ListField(required=True, label=_('document id list'))
|
||
model_id = serializers.UUIDField(required=True, label=_('model id'))
|
||
prompt = serializers.CharField(required=True, label=_('prompt'))
|
||
state_list = serializers.ListField(required=True, label=_('state list'))
|
||
|
||
|
||
class DocumentMigrateSerializer(serializers.Serializer):
|
||
document_id_list = serializers.ListField(required=True, label=_('document id list'))
|
||
|
||
|
||
class BatchEditHitHandlingSerializer(serializers.Serializer):
|
||
id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True), label=_('id list'))
|
||
hit_handling_method = serializers.CharField(required=True, label=_('hit handling method'))
|
||
directly_return_similarity = serializers.FloatField(required=False, max_value=2, min_value=0,
|
||
label=_('directly return similarity'))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
if self.data.get('hit_handling_method') not in ['optimization', 'directly_return']:
|
||
raise AppApiException(500, _('The type only supports optimization|directly_return'))
|
||
|
||
|
||
class DocumentSerializers(serializers.Serializer):
|
||
class Export(serializers.Serializer):
|
||
type = serializers.CharField(required=True, validators=[
|
||
validators.RegexValidator(regex=re.compile("^csv|excel$"),
|
||
message=_('The template type only supports excel|csv'),
|
||
code=500)
|
||
], label=_('type'))
|
||
|
||
def export(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
language = get_language()
|
||
if self.data.get('type') == 'csv':
|
||
file = open(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'template',
|
||
f'csv_template_{to_locale(language)}.csv'),
|
||
"rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'text/csv',
|
||
'Content-Disposition': 'attachment; filename="csv_template.csv"'})
|
||
elif self.data.get('type') == 'excel':
|
||
file = open(os.path.join(PROJECT_DIR, "apps", "knowledge", 'template',
|
||
f'excel_template_{to_locale(language)}.xlsx'), "rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'application/vnd.ms-excel',
|
||
'Content-Disposition': 'attachment; filename="excel_template.xlsx"'})
|
||
else:
|
||
return None
|
||
|
||
def table_export(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
language = get_language()
|
||
if self.data.get('type') == 'csv':
|
||
file = open(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'template',
|
||
f'table_template_{to_locale(language)}.csv'),
|
||
"rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'text/cxv',
|
||
'Content-Disposition': 'attachment; filename="csv_template.csv"'})
|
||
elif self.data.get('type') == 'excel':
|
||
file = open(os.path.join(PROJECT_DIR, "apps", "knowledge", 'template',
|
||
f'table_template_{to_locale(language)}.xlsx'),
|
||
"rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'application/vnd.ms-excel',
|
||
'Content-Disposition': 'attachment; filename="excel_template.xlsx"'})
|
||
else:
|
||
return None
|
||
|
||
class Migrate(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
target_knowledge_id = serializers.UUIDField(required=True, label=_('target knowledge id'))
|
||
document_id_list = serializers.ListField(required=True, label=_('document list'),
|
||
child=serializers.UUIDField(required=True, label=_('document id')))
|
||
|
||
@transaction.atomic
|
||
def migrate(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
knowledge_id = self.data.get('knowledge_id')
|
||
target_knowledge_id = self.data.get('target_knowledge_id')
|
||
knowledge = QuerySet(Knowledge).filter(id=knowledge_id).first()
|
||
target_knowledge = QuerySet(Knowledge).filter(id=target_knowledge_id).first()
|
||
document_id_list = self.data.get('document_id_list')
|
||
document_list = QuerySet(Document).filter(knowledge_id=knowledge_id, id__in=document_id_list)
|
||
paragraph_list = QuerySet(Paragraph).filter(knowledge_id=knowledge_id, document_id__in=document_id_list)
|
||
|
||
problem_paragraph_mapping_list = QuerySet(ProblemParagraphMapping).filter(paragraph__in=paragraph_list)
|
||
problem_list = QuerySet(Problem).filter(
|
||
id__in=[problem_paragraph_mapping.problem_id for problem_paragraph_mapping in
|
||
problem_paragraph_mapping_list])
|
||
target_problem_list = list(
|
||
QuerySet(Problem).filter(content__in=[problem.content for problem in problem_list],
|
||
knowledge_id=target_knowledge_id))
|
||
target_handle_problem_list = [
|
||
self.get_target_knowledge_problem(target_knowledge_id, problem_paragraph_mapping,
|
||
problem_list, target_problem_list) for
|
||
problem_paragraph_mapping
|
||
in
|
||
problem_paragraph_mapping_list]
|
||
|
||
create_problem_list = [problem for problem, is_create in target_handle_problem_list if
|
||
is_create is not None and is_create]
|
||
# 插入问题
|
||
QuerySet(Problem).bulk_create(create_problem_list)
|
||
# 修改mapping
|
||
QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list,
|
||
['problem_id', 'knowledge_id'])
|
||
# 修改文档
|
||
if knowledge.type == KnowledgeType.BASE.value and target_knowledge.type == KnowledgeType.WEB.value:
|
||
document_list.update(knowledge_id=target_knowledge_id, type=KnowledgeType.WEB,
|
||
meta={'source_url': '', 'selector': ''})
|
||
elif target_knowledge.type == KnowledgeType.BASE.value and knowledge.type == KnowledgeType.WEB.value:
|
||
document_list.update(knowledge_id=target_knowledge_id, type=KnowledgeType.BASE,
|
||
meta={})
|
||
else:
|
||
document_list.update(knowledge_id=target_knowledge_id)
|
||
model_id = None
|
||
if knowledge.embedding_model_id != target_knowledge.embedding_model_id:
|
||
model_id = get_embedding_model_id_by_knowledge_id(target_knowledge_id)
|
||
|
||
pid_list = [paragraph.id for paragraph in paragraph_list]
|
||
# 修改段落信息
|
||
paragraph_list.update(knowledge_id=target_knowledge_id)
|
||
# 修改向量信息
|
||
if model_id:
|
||
delete_embedding_by_paragraph_ids(pid_list)
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id__in=document_id_list),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
ListenerManagement.update_status(QuerySet(Paragraph).filter(document_id__in=document_id_list),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
ListenerManagement.get_aggregation_document_status_by_query_set(
|
||
QuerySet(Document).filter(id__in=document_id_list))()
|
||
embedding_by_document_list.delay(document_id_list, model_id)
|
||
else:
|
||
update_embedding_knowledge_id(pid_list, target_knowledge_id)
|
||
|
||
@staticmethod
|
||
def get_target_knowledge_problem(target_knowledge_id: str,
|
||
problem_paragraph_mapping,
|
||
source_problem_list,
|
||
target_problem_list):
|
||
source_problem_list = [source_problem for source_problem in source_problem_list if
|
||
source_problem.id == problem_paragraph_mapping.problem_id]
|
||
problem_paragraph_mapping.knowledge_id = target_knowledge_id
|
||
if len(source_problem_list) > 0:
|
||
problem_content = source_problem_list[-1].content
|
||
problem_list = [problem for problem in target_problem_list if problem.content == problem_content]
|
||
if len(problem_list) > 0:
|
||
problem = problem_list[-1]
|
||
problem_paragraph_mapping.problem_id = problem.id
|
||
return problem, False
|
||
else:
|
||
problem = Problem(id=uuid.uuid7(), knowledge_id=target_knowledge_id, content=problem_content)
|
||
target_problem_list.append(problem)
|
||
problem_paragraph_mapping.problem_id = problem.id
|
||
return problem, True
|
||
return None
|
||
|
||
class Query(serializers.Serializer):
|
||
# 知识库id
|
||
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
name = serializers.CharField(required=False, max_length=128, min_length=1, allow_null=True, allow_blank=True,
|
||
label=_('document name'))
|
||
hit_handling_method = serializers.CharField(required=False, label=_('hit handling method'))
|
||
is_active = serializers.BooleanField(required=False, label=_('document is active'))
|
||
task_type = serializers.IntegerField(required=False, label=_('task type'))
|
||
status = serializers.CharField(required=False, label=_('status'))
|
||
order_by = serializers.CharField(required=False, label=_('order by'))
|
||
|
||
def get_query_set(self):
|
||
query_set = QuerySet(model=Document)
|
||
query_set = query_set.filter(**{'knowledge_id': self.data.get("knowledge_id")})
|
||
if 'name' in self.data and self.data.get('name') is not None:
|
||
query_set = query_set.filter(**{'name__icontains': self.data.get('name')})
|
||
if 'hit_handling_method' in self.data and self.data.get('hit_handling_method') is not None:
|
||
query_set = query_set.filter(**{'hit_handling_method': self.data.get('hit_handling_method')})
|
||
if 'is_active' in self.data and self.data.get('is_active') is not None:
|
||
query_set = query_set.filter(**{'is_active': self.data.get('is_active')})
|
||
if 'status' in self.data and self.data.get(
|
||
'status') is not None:
|
||
task_type = self.data.get('task_type')
|
||
status = self.data.get(
|
||
'status')
|
||
if task_type is not None:
|
||
query_set = query_set.annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType(task_type).value,
|
||
1),
|
||
).filter(task_type_status=State(status).value).values('id')
|
||
else:
|
||
if status != State.SUCCESS.value:
|
||
query_set = query_set.filter(status__icontains=status)
|
||
else:
|
||
query_set = query_set.filter(status__iregex='^[2n]*$')
|
||
order_by = self.data.get('order_by', '')
|
||
order_by_query_set = QuerySet(model=get_dynamics_model(
|
||
{'char_length': models.CharField(), 'paragraph_count': models.IntegerField(),
|
||
"update_time": models.IntegerField(), 'create_time': models.DateTimeField()}))
|
||
if order_by:
|
||
order_by_query_set = order_by_query_set.order_by(order_by)
|
||
else:
|
||
order_by_query_set = order_by_query_set.order_by('-create_time', 'id')
|
||
return {
|
||
'document_custom_sql': query_set,
|
||
'order_by_query': order_by_query_set
|
||
}
|
||
|
||
def list(self):
|
||
self.is_valid(raise_exception=True)
|
||
query_set = self.get_query_set()
|
||
return native_search(query_set, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_document.sql')))
|
||
|
||
def page(self, current_page, page_size):
|
||
self.is_valid(raise_exception=True)
|
||
query_set = self.get_query_set()
|
||
return native_page_search(current_page, page_size, query_set, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_document.sql')))
|
||
|
||
class Sync(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=False, label=_('workspace id'))
|
||
knowledge_id = serializers.UUIDField(required=False, label=_('knowledge id'))
|
||
document_id = serializers.UUIDField(required=True, label=_('document id'))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
first = QuerySet(Document).filter(id=document_id).first()
|
||
if first is None:
|
||
raise AppApiException(500, _('document id not exist'))
|
||
if first.type != KnowledgeType.WEB:
|
||
raise AppApiException(500, _('Synchronization is only supported for web site types'))
|
||
|
||
@transaction.atomic
|
||
def sync(self, with_valid=True, with_embedding=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
document = QuerySet(Document).filter(id=document_id).first()
|
||
state = State.SUCCESS
|
||
if document.type != KnowledgeType.WEB:
|
||
return True
|
||
try:
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id),
|
||
TaskType.SYNC,
|
||
State.PENDING)
|
||
ListenerManagement.get_aggregation_document_status(document_id)()
|
||
source_url = document.meta.get('source_url')
|
||
selector_list = document.meta.get('selector').split(
|
||
" ") if 'selector' in document.meta and document.meta.get('selector') is not None else []
|
||
result = Fork(source_url, selector_list).fork()
|
||
if result.status == 200:
|
||
# 删除段落
|
||
QuerySet(model=Paragraph).filter(document_id=document_id).delete()
|
||
# 删除问题
|
||
QuerySet(model=ProblemParagraphMapping).filter(document_id=document_id).delete()
|
||
delete_problems_and_mappings([document_id])
|
||
# 删除向量库
|
||
delete_embedding_by_document(document_id)
|
||
paragraphs = get_split_model('web.md').parse(result.content)
|
||
char_length = reduce(lambda x, y: x + y,
|
||
[len(p.get('content')) for p in paragraphs],
|
||
0)
|
||
QuerySet(Document).filter(id=document_id).update(char_length=char_length)
|
||
document_paragraph_model = DocumentSerializers.Create.get_paragraph_model(document, paragraphs)
|
||
|
||
paragraph_model_list = document_paragraph_model.get('paragraph_model_list')
|
||
problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list')
|
||
problem_model_list, problem_paragraph_mapping_list = ProblemParagraphManage(
|
||
problem_paragraph_object_list, document.knowledge_id).to_problem_model_list()
|
||
# 批量插入段落
|
||
if len(paragraph_model_list) > 0:
|
||
max_position = Paragraph.objects.filter(document_id=document_id).aggregate(
|
||
max_position=Max('position')
|
||
)['max_position'] or 0
|
||
for i, paragraph in enumerate(paragraph_model_list):
|
||
paragraph.position = max_position + i + 1
|
||
QuerySet(Paragraph).bulk_create(paragraph_model_list)
|
||
# 批量插入问题
|
||
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
|
||
# 插入关联问题
|
||
QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len(
|
||
problem_paragraph_mapping_list) > 0 else None
|
||
# 向量化
|
||
if with_embedding:
|
||
embedding_model_id = get_embedding_model_id_by_knowledge_id(document.knowledge_id)
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
ListenerManagement.update_status(QuerySet(Paragraph).filter(document_id=document_id),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
ListenerManagement.get_aggregation_document_status(document_id)()
|
||
embedding_by_document.delay(document_id, embedding_model_id)
|
||
|
||
else:
|
||
state = State.FAILURE
|
||
except Exception as e:
|
||
maxkb_logger.error(f'{str(e)}:{traceback.format_exc()}')
|
||
state = State.FAILURE
|
||
ListenerManagement.update_status(
|
||
QuerySet(Document).filter(id=document_id),
|
||
TaskType.SYNC,
|
||
state
|
||
)
|
||
ListenerManagement.update_status(
|
||
QuerySet(Paragraph).filter(document_id=document_id),
|
||
TaskType.SYNC,
|
||
state
|
||
)
|
||
ListenerManagement.get_aggregation_document_status(document_id)()
|
||
return True
|
||
|
||
class Operate(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=False, label=_('workspace id'), allow_blank=True)
|
||
document_id = serializers.UUIDField(required=True, label=_('document id'))
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
if not QuerySet(Document).filter(id=document_id).exists():
|
||
raise AppApiException(500, _('document id not exist'))
|
||
|
||
def export(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document = QuerySet(Document).filter(id=self.data.get("document_id")).first()
|
||
paragraph_list = native_search(QuerySet(Paragraph).filter(document_id=self.data.get("document_id")),
|
||
get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql',
|
||
'list_paragraph_document_name.sql')))
|
||
problem_mapping_list = native_search(
|
||
QuerySet(ProblemParagraphMapping).filter(document_id=self.data.get("document_id")), get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_problem_mapping.sql')),
|
||
with_table_name=True)
|
||
data_dict, document_dict = self.merge_problem(paragraph_list, problem_mapping_list, [document])
|
||
workbook = self.get_workbook(data_dict, document_dict)
|
||
response = HttpResponse(content_type='application/vnd.ms-excel')
|
||
response['Content-Disposition'] = f'attachment; filename="data.xlsx"'
|
||
workbook.save(response)
|
||
return response
|
||
|
||
def export_zip(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document = QuerySet(Document).filter(id=self.data.get("document_id")).first()
|
||
paragraph_list = native_search(QuerySet(Paragraph).filter(document_id=self.data.get("document_id")),
|
||
get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql',
|
||
'list_paragraph_document_name.sql')))
|
||
problem_mapping_list = native_search(
|
||
QuerySet(ProblemParagraphMapping).filter(document_id=self.data.get("document_id")), get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_problem_mapping.sql')),
|
||
with_table_name=True)
|
||
data_dict, document_dict = self.merge_problem(paragraph_list, problem_mapping_list, [document])
|
||
res = [parse_image(paragraph.get('content')) for paragraph in paragraph_list]
|
||
|
||
workbook = DocumentSerializers.Operate.get_workbook(data_dict, document_dict)
|
||
response = HttpResponse(content_type='application/zip')
|
||
response['Content-Disposition'] = 'attachment; filename="archive.zip"'
|
||
zip_buffer = io.BytesIO()
|
||
with TemporaryDirectory() as tempdir:
|
||
knowledge_file = os.path.join(tempdir, 'knowledge.xlsx')
|
||
workbook.save(knowledge_file)
|
||
for r in res:
|
||
write_image(tempdir, r)
|
||
zip_dir(tempdir, zip_buffer)
|
||
response.write(zip_buffer.getvalue())
|
||
return response
|
||
|
||
def download_source_file(self):
|
||
self.is_valid(raise_exception=True)
|
||
file = QuerySet(File).filter(source_id=self.data.get('document_id')).first()
|
||
if not file:
|
||
raise AppApiException(500, _('file not exist'))
|
||
return FileSerializer.Operate(data={'id': file.id}).get(with_valid=True)
|
||
|
||
def one(self, with_valid=False):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
query_set = QuerySet(model=Document)
|
||
query_set = query_set.filter(**{'id': self.data.get("document_id")})
|
||
return native_search({
|
||
'document_custom_sql': query_set,
|
||
'order_by_query': QuerySet(Document).order_by('-create_time', 'id')
|
||
}, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_document.sql')), with_search_one=True)
|
||
|
||
def edit(self, instance: Dict, with_valid=False):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
_document = QuerySet(Document).get(id=self.data.get("document_id"))
|
||
if with_valid:
|
||
DocumentEditInstanceSerializer(data=instance).is_valid(document=_document)
|
||
update_keys = ['name', 'is_active', 'hit_handling_method', 'directly_return_similarity', 'meta']
|
||
for update_key in update_keys:
|
||
if update_key in instance and instance.get(update_key) is not None:
|
||
_document.__setattr__(update_key, instance.get(update_key))
|
||
_document.save()
|
||
return self.one()
|
||
|
||
def cancel(self, instance, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
CancelInstanceSerializer(data=instance).is_valid()
|
||
document_id = self.data.get("document_id")
|
||
ListenerManagement.update_status(
|
||
QuerySet(Paragraph).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType(instance.get('type')).value, 1),
|
||
).filter(
|
||
task_type_status__in=[State.PENDING.value, State.STARTED.value]
|
||
).filter(
|
||
document_id=document_id
|
||
).values('id'),
|
||
TaskType(instance.get('type')),
|
||
State.REVOKE
|
||
)
|
||
ListenerManagement.update_status(
|
||
QuerySet(Document).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType(instance.get('type')).value,
|
||
1),
|
||
).filter(
|
||
task_type_status__in=[State.PENDING.value, State.STARTED.value]
|
||
).filter(
|
||
id=document_id
|
||
).values('id'),
|
||
TaskType(instance.get('type')),
|
||
State.REVOKE
|
||
)
|
||
return True
|
||
|
||
@transaction.atomic
|
||
def delete(self):
|
||
document_id = self.data.get("document_id")
|
||
QuerySet(model=Document).filter(id=document_id).delete()
|
||
# 删除段落
|
||
QuerySet(model=Paragraph).filter(document_id=document_id).delete()
|
||
# 删除问题
|
||
delete_problems_and_mappings([document_id])
|
||
# 删除向量库
|
||
delete_embedding_by_document(document_id)
|
||
return True
|
||
|
||
def refresh(self, state_list=None, with_valid=True):
|
||
if state_list is None:
|
||
state_list = [State.PENDING.value, State.STARTED.value, State.SUCCESS.value, State.FAILURE.value,
|
||
State.REVOKE.value,
|
||
State.REVOKED.value, State.IGNORED.value]
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
knowledge = QuerySet(Knowledge).filter(id=self.data.get('knowledge_id')).first()
|
||
embedding_model_id = knowledge.embedding_model_id
|
||
knowledge_user_id = knowledge.user_id
|
||
embedding_model = QuerySet(Model).filter(id=embedding_model_id).first()
|
||
if embedding_model is None:
|
||
raise AppApiException(500, _('Model does not exist'))
|
||
document_id = self.data.get("document_id")
|
||
ListenerManagement.update_status(
|
||
QuerySet(Document).filter(id=document_id), TaskType.EMBEDDING, State.PENDING
|
||
)
|
||
ListenerManagement.update_status(
|
||
QuerySet(Paragraph).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType.EMBEDDING.value, 1),
|
||
).filter(task_type_status__in=state_list, document_id=document_id).values('id'),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING
|
||
)
|
||
ListenerManagement.get_aggregation_document_status(document_id)()
|
||
|
||
try:
|
||
embedding_by_document.delay(document_id, embedding_model_id, state_list)
|
||
except AlreadyQueued as e:
|
||
raise AppApiException(500, _('The task is being executed, please do not send it repeatedly.'))
|
||
|
||
@staticmethod
|
||
def get_workbook(data_dict, document_dict):
|
||
# 创建工作簿对象
|
||
workbook = openpyxl.Workbook()
|
||
workbook.remove(workbook.active)
|
||
if len(data_dict.keys()) == 0:
|
||
data_dict['sheet'] = []
|
||
for sheet_id in data_dict:
|
||
# 添加工作表
|
||
worksheet = workbook.create_sheet(document_dict.get(sheet_id))
|
||
data = [
|
||
[gettext('Section title (optional)'),
|
||
gettext('Section content (required, question answer, no more than 4096 characters)'),
|
||
gettext('Question (optional, one per line in the cell)')],
|
||
*data_dict.get(sheet_id, [])
|
||
]
|
||
# 写入数据到工作表
|
||
for row_idx, row in enumerate(data):
|
||
for col_idx, col in enumerate(row):
|
||
cell = worksheet.cell(row=row_idx + 1, column=col_idx + 1)
|
||
if isinstance(col, str):
|
||
col = re.sub(ILLEGAL_CHARACTERS_RE, '', col)
|
||
if col.startswith(('=', '+', '-', '@')):
|
||
col = '\ufeff' + col
|
||
cell.value = col
|
||
# 创建HttpResponse对象返回Excel文件
|
||
return workbook
|
||
|
||
@staticmethod
|
||
def merge_problem(paragraph_list: List[Dict], problem_mapping_list: List[Dict], document_list):
|
||
result = {}
|
||
document_dict = {}
|
||
|
||
for paragraph in paragraph_list:
|
||
problem_list = [problem_mapping.get('content') for problem_mapping in problem_mapping_list if
|
||
problem_mapping.get('paragraph_id') == paragraph.get('id')]
|
||
document_sheet = result.get(paragraph.get('document_id'))
|
||
document_name = DocumentSerializers.Operate.reset_document_name(paragraph.get('document_name'))
|
||
d = document_dict.get(document_name)
|
||
if d is None:
|
||
document_dict[document_name] = {paragraph.get('document_id')}
|
||
else:
|
||
d.add(paragraph.get('document_id'))
|
||
|
||
if document_sheet is None:
|
||
result[paragraph.get('document_id')] = [[paragraph.get('title'), paragraph.get('content'),
|
||
'\n'.join(problem_list)]]
|
||
else:
|
||
document_sheet.append([paragraph.get('title'), paragraph.get('content'), '\n'.join(problem_list)])
|
||
for document in document_list:
|
||
if document.id not in result:
|
||
document_name = DocumentSerializers.Operate.reset_document_name(document.name)
|
||
result[document.id] = [[]]
|
||
d = document_dict.get(document_name)
|
||
if d is None:
|
||
document_dict[document_name] = {document.id}
|
||
else:
|
||
d.add(document.id)
|
||
result_document_dict = {}
|
||
for d_name in document_dict:
|
||
for index, d_id in enumerate(document_dict.get(d_name)):
|
||
result_document_dict[d_id] = d_name if index == 0 else d_name + str(index)
|
||
return result, result_document_dict
|
||
|
||
@staticmethod
|
||
def reset_document_name(document_name):
|
||
if document_name is not None:
|
||
document_name = document_name.strip()[0:29]
|
||
if document_name is None or not Utils.valid_sheet_name(document_name):
|
||
return "Sheet"
|
||
return document_name.strip()
|
||
|
||
class Create(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=False, label=_('workspace id'), allow_null=True)
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('document id'))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
if not QuerySet(Knowledge).filter(id=self.data.get('knowledge_id')).exists():
|
||
raise AppApiException(10000, _('knowledge id not exist'))
|
||
return True
|
||
|
||
@staticmethod
|
||
def post_embedding(result, document_id, knowledge_id):
|
||
DocumentSerializers.Operate(
|
||
data={'knowledge_id': knowledge_id, 'document_id': document_id}).refresh()
|
||
return result
|
||
|
||
@post(post_function=post_embedding)
|
||
@transaction.atomic
|
||
def save(self, instance: Dict, with_valid=False, **kwargs):
|
||
if with_valid:
|
||
DocumentInstanceSerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
knowledge_id = self.data.get('knowledge_id')
|
||
document_paragraph_model = self.get_document_paragraph_model(knowledge_id, instance)
|
||
|
||
document_model = document_paragraph_model.get('document')
|
||
paragraph_model_list = document_paragraph_model.get('paragraph_model_list')
|
||
problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list')
|
||
problem_model_list, problem_paragraph_mapping_list = (
|
||
ProblemParagraphManage(problem_paragraph_object_list, knowledge_id).to_problem_model_list())
|
||
# 插入文档
|
||
document_model.save()
|
||
# 批量插入段落
|
||
if len(paragraph_model_list) > 0:
|
||
max_position = Paragraph.objects.filter(document_id=document_model.id).aggregate(
|
||
max_position=Max('position')
|
||
)['max_position'] or 0
|
||
for i, paragraph in enumerate(paragraph_model_list):
|
||
paragraph.position = max_position + i + 1
|
||
QuerySet(Paragraph).bulk_create(paragraph_model_list)
|
||
# 批量插入问题
|
||
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
|
||
# 批量插入关联问题
|
||
QuerySet(ProblemParagraphMapping).bulk_create(
|
||
problem_paragraph_mapping_list
|
||
) if len(problem_paragraph_mapping_list) > 0 else None
|
||
document_id = str(document_model.id)
|
||
return (DocumentSerializers.Operate(
|
||
data={'knowledge_id': knowledge_id, 'document_id': document_id}
|
||
).one(with_valid=True), document_id, knowledge_id)
|
||
|
||
@staticmethod
|
||
def get_paragraph_model(document_model, paragraph_list: List):
|
||
knowledge_id = document_model.knowledge_id
|
||
paragraph_model_dict_list = [
|
||
ParagraphSerializers.Create(
|
||
data={
|
||
'knowledge_id': knowledge_id, 'document_id': str(document_model.id)
|
||
}).get_paragraph_problem_model(knowledge_id, document_model.id, paragraph)
|
||
for paragraph in paragraph_list]
|
||
|
||
paragraph_model_list = []
|
||
problem_paragraph_object_list = []
|
||
for paragraphs in paragraph_model_dict_list:
|
||
paragraph = paragraphs.get('paragraph')
|
||
for problem_model in paragraphs.get('problem_paragraph_object_list'):
|
||
problem_paragraph_object_list.append(problem_model)
|
||
paragraph_model_list.append(paragraph)
|
||
|
||
return {
|
||
'document': document_model,
|
||
'paragraph_model_list': paragraph_model_list,
|
||
'problem_paragraph_object_list': problem_paragraph_object_list
|
||
}
|
||
|
||
@staticmethod
|
||
def get_document_paragraph_model(knowledge_id, instance: Dict):
|
||
document_model = Document(
|
||
**{
|
||
'knowledge_id': knowledge_id,
|
||
'id': uuid.uuid7(),
|
||
'name': instance.get('name'),
|
||
'char_length': reduce(
|
||
lambda x, y: x + y,
|
||
[len(p.get('content')) for p in instance.get('paragraphs', [])],
|
||
0),
|
||
'meta': instance.get('meta') if instance.get('meta') is not None else {},
|
||
'type': instance.get('type') if instance.get('type') is not None else KnowledgeType.BASE
|
||
})
|
||
|
||
return DocumentSerializers.Create.get_paragraph_model(
|
||
document_model,
|
||
instance.get('paragraphs') if 'paragraphs' in instance else []
|
||
)
|
||
|
||
def save_web(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
DocumentWebInstanceSerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
knowledge_id = self.data.get('knowledge_id')
|
||
source_url_list = instance.get('source_url_list')
|
||
selector = instance.get('selector')
|
||
sync_web_document.delay(knowledge_id, source_url_list, selector)
|
||
|
||
def save_qa(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
DocumentInstanceQASerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
file_list = instance.get('file_list')
|
||
document_list = flat_map([self.parse_qa_file(file) for file in file_list])
|
||
return DocumentSerializers.Batch(data={
|
||
'knowledge_id': self.data.get('knowledge_id'), 'workspace_id': self.data.get('workspace_id')
|
||
}).batch_save(document_list)
|
||
|
||
def save_table(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
DocumentInstanceTableSerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
file_list = instance.get('file_list')
|
||
document_list = flat_map([self.parse_table_file(file) for file in file_list])
|
||
return DocumentSerializers.Batch(data={
|
||
'knowledge_id': self.data.get('knowledge_id'), 'workspace_id': self.data.get('workspace_id')
|
||
}).batch_save(document_list)
|
||
|
||
def parse_qa_file(self, file):
|
||
get_buffer = FileBufferHandle().get_buffer
|
||
for parse_qa_handle in parse_qa_handle_list:
|
||
if parse_qa_handle.support(file, get_buffer):
|
||
return parse_qa_handle.handle(file, get_buffer, self.save_image)
|
||
raise AppApiException(500, _('Unsupported file format'))
|
||
|
||
def parse_table_file(self, file):
|
||
get_buffer = FileBufferHandle().get_buffer
|
||
for parse_table_handle in parse_table_handle_list:
|
||
if parse_table_handle.support(file, get_buffer):
|
||
return parse_table_handle.handle(file, get_buffer, self.save_image)
|
||
raise AppApiException(500, _('Unsupported file format'))
|
||
|
||
def save_image(self, image_list):
|
||
if image_list is not None and len(image_list) > 0:
|
||
exist_image_list = [str(i.get('id')) for i in
|
||
QuerySet(File).filter(id__in=[i.id for i in image_list]).values('id')]
|
||
save_image_list = [image for image in image_list if not exist_image_list.__contains__(str(image.id))]
|
||
save_image_list = list({img.id: img for img in save_image_list}.values())
|
||
# save image
|
||
for file in save_image_list:
|
||
file_bytes = file.meta.pop('content')
|
||
file.meta['knowledge_id'] = self.data.get('knowledge_id')
|
||
file.source_type = FileSourceType.KNOWLEDGE
|
||
file.source_id = self.data.get('knowledge_id')
|
||
file.save(file_bytes)
|
||
|
||
class Split(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=False, label=_('workspace id'), allow_null=True)
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
|
||
def is_valid(self, *, instance=None, raise_exception=True):
|
||
super().is_valid(raise_exception=True)
|
||
files = instance.get('file')
|
||
knowledge = Knowledge.objects.filter(id=self.data.get('knowledge_id')).first()
|
||
for f in files:
|
||
if f.size > 1024 * 1024 * knowledge.file_size_limit:
|
||
raise AppApiException(500, _(
|
||
'The maximum size of the uploaded file cannot exceed {}MB'
|
||
).format(knowledge.file_size_limit))
|
||
|
||
def parse(self, instance):
|
||
self.is_valid(instance=instance, raise_exception=True)
|
||
DocumentSplitRequest(data=instance).is_valid(raise_exception=True)
|
||
|
||
file_list = instance.get("file")
|
||
return reduce(
|
||
lambda x, y: [*x, *y],
|
||
[self.file_to_paragraph(
|
||
f,
|
||
instance.get("patterns", None),
|
||
instance.get("with_filter", None),
|
||
instance.get("limit", 4096)
|
||
) for f in file_list],
|
||
[]
|
||
)
|
||
|
||
def save_image(self, image_list):
|
||
if image_list is not None and len(image_list) > 0:
|
||
exist_image_list = [str(i.get('id')) for i in
|
||
QuerySet(File).filter(id__in=[i.id for i in image_list]).values('id')]
|
||
save_image_list = [image for image in image_list if not exist_image_list.__contains__(str(image.id))]
|
||
save_image_list = list({img.id: img for img in save_image_list}.values())
|
||
# save image
|
||
for file in save_image_list:
|
||
file_bytes = file.meta.pop('content')
|
||
file.meta['knowledge_id'] = self.data.get('knowledge_id')
|
||
file.source_type = FileSourceType.KNOWLEDGE
|
||
file.source_id = self.data.get('knowledge_id')
|
||
file.save(file_bytes)
|
||
|
||
def file_to_paragraph(self, file, pattern_list: List, with_filter: bool, limit: int):
|
||
# 保存源文件
|
||
file_id = uuid.uuid7()
|
||
raw_file = File(
|
||
id=file_id,
|
||
file_name=file.name,
|
||
file_size=file.size,
|
||
source_type=FileSourceType.KNOWLEDGE,
|
||
source_id=self.data.get('knowledge_id'),
|
||
)
|
||
raw_file.save(file.read())
|
||
file.seek(0)
|
||
|
||
get_buffer = FileBufferHandle().get_buffer
|
||
for split_handle in split_handles:
|
||
if split_handle.support(file, get_buffer):
|
||
result = split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, self.save_image)
|
||
if isinstance(result, list):
|
||
for item in result:
|
||
item['source_file_id'] = file_id
|
||
return result
|
||
result['source_file_id'] = file_id
|
||
return [result]
|
||
result = default_split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, self.save_image)
|
||
if isinstance(result, list):
|
||
for item in result:
|
||
item['source_file_id'] = file_id
|
||
return result
|
||
result['source_file_id'] = file_id
|
||
return [result]
|
||
|
||
class SplitPattern(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=False, label=_('workspace id'), allow_null=True)
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
|
||
@staticmethod
|
||
def list():
|
||
return [
|
||
{'key': "#", 'value': '(?<=^)# .*|(?<=\\n)# .*'},
|
||
{'key': '##', 'value': '(?<=\\n)(?<!#)## (?!#).*|(?<=^)(?<!#)## (?!#).*'},
|
||
{'key': '###', 'value': "(?<=\\n)(?<!#)### (?!#).*|(?<=^)(?<!#)### (?!#).*"},
|
||
{'key': '####', 'value': "(?<=\\n)(?<!#)#### (?!#).*|(?<=^)(?<!#)#### (?!#).*"},
|
||
{'key': '#####', 'value': "(?<=\\n)(?<!#)##### (?!#).*|(?<=^)(?<!#)##### (?!#).*"},
|
||
{'key': '######', 'value': "(?<=\\n)(?<!#)###### (?!#).*|(?<=^)(?<!#)###### (?!#).*"},
|
||
{'key': '-', 'value': '(?<! )- .*'},
|
||
{'key': _('space'), 'value': '(?<! ) (?! )'},
|
||
{'key': _('semicolon'), 'value': '(?<!;);(?!;)'}, {'key': _('comma'), 'value': '(?<!,),(?!,)'},
|
||
{'key': _('period'), 'value': '(?<!。)。(?!。)'}, {'key': _('enter'), 'value': '(?<!\\n)\\n(?!\\n)'},
|
||
{'key': _('blank line'), 'value': '(?<!\\n)\\n\\n(?!\\n)'}
|
||
]
|
||
|
||
class Batch(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
|
||
@staticmethod
|
||
def link_file(source_file_id, document_id):
|
||
if source_file_id is None:
|
||
return
|
||
source_file = QuerySet(File).filter(id=source_file_id).first()
|
||
if source_file:
|
||
# 获取原始文件内容
|
||
file_content = source_file.get_bytes()
|
||
|
||
# 创建新文件对象,复制原始文件的重要属性
|
||
new_file = File(
|
||
id=uuid.uuid7(),
|
||
file_name=source_file.file_name,
|
||
file_size=source_file.file_size,
|
||
source_type=FileSourceType.DOCUMENT,
|
||
source_id=document_id, # 更新为当前知识库ID
|
||
meta=source_file.meta.copy() if source_file.meta else {}
|
||
)
|
||
|
||
# 保存文件内容和元数据
|
||
new_file.save(file_content)
|
||
|
||
@staticmethod
|
||
def post_embedding(document_list, knowledge_id, workspace_id):
|
||
for document_dict in document_list:
|
||
DocumentSerializers.Operate(data={
|
||
'knowledge_id': knowledge_id,
|
||
'document_id': document_dict.get('id'),
|
||
'workspace_id': workspace_id
|
||
}).refresh()
|
||
return document_list
|
||
|
||
@post(post_function=post_embedding)
|
||
@transaction.atomic
|
||
def batch_save(self, instance_list: List[Dict], with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
DocumentInstanceSerializer(many=True, data=instance_list).is_valid(raise_exception=True)
|
||
workspace_id = self.data.get("workspace_id")
|
||
knowledge_id = self.data.get("knowledge_id")
|
||
document_model_list = []
|
||
paragraph_model_list = []
|
||
problem_paragraph_object_list = []
|
||
# 插入文档
|
||
for document in instance_list:
|
||
document_paragraph_dict_model = DocumentSerializers.Create.get_document_paragraph_model(
|
||
knowledge_id,
|
||
document
|
||
)
|
||
# 保存文档和文件的关系
|
||
document_instance = document_paragraph_dict_model.get('document')
|
||
self.link_file(document.get('source_file_id'), document_instance.id)
|
||
document_model_list.append(document_instance)
|
||
for paragraph in document_paragraph_dict_model.get('paragraph_model_list'):
|
||
paragraph_model_list.append(paragraph)
|
||
for problem_paragraph_object in document_paragraph_dict_model.get('problem_paragraph_object_list'):
|
||
problem_paragraph_object_list.append(problem_paragraph_object)
|
||
|
||
problem_model_list, problem_paragraph_mapping_list = (
|
||
ProblemParagraphManage(problem_paragraph_object_list, knowledge_id).to_problem_model_list()
|
||
)
|
||
# 插入文档
|
||
QuerySet(Document).bulk_create(document_model_list) if len(document_model_list) > 0 else None
|
||
# 批量插入段落
|
||
if len(paragraph_model_list) > 0:
|
||
for document in document_model_list:
|
||
max_position = Paragraph.objects.filter(document_id=document.id).aggregate(
|
||
max_position=Max('position')
|
||
)['max_position'] or 0
|
||
sub_list = [p for p in paragraph_model_list if p.document_id == document.id]
|
||
for i, paragraph in enumerate(sub_list):
|
||
paragraph.position = max_position + i + 1
|
||
QuerySet(Paragraph).bulk_create(sub_list if len(sub_list) > 0 else [])
|
||
# 批量插入问题
|
||
bulk_create_in_batches(Problem, problem_model_list, batch_size=1000)
|
||
# 批量插入关联问题
|
||
bulk_create_in_batches(ProblemParagraphMapping, problem_paragraph_mapping_list, batch_size=1000)
|
||
# 查询文档
|
||
query_set = QuerySet(model=Document)
|
||
if len(document_model_list) == 0:
|
||
return [], knowledge_id
|
||
query_set = query_set.filter(**{'id__in': [d.id for d in document_model_list]})
|
||
return native_search(
|
||
{
|
||
'document_custom_sql': query_set,
|
||
'order_by_query': QuerySet(Document).order_by('-create_time', 'id')
|
||
},
|
||
select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_document.sql')
|
||
),
|
||
with_search_one=False
|
||
), knowledge_id, workspace_id
|
||
|
||
@staticmethod
|
||
def _batch_sync(document_id_list: List[str]):
|
||
for document_id in document_id_list:
|
||
DocumentSerializers.Sync(data={'document_id': document_id}).sync()
|
||
|
||
def batch_sync(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
# 异步同步
|
||
work_thread_pool.submit(self._batch_sync, instance.get('id_list'))
|
||
return True
|
||
|
||
@transaction.atomic
|
||
def batch_delete(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
QuerySet(Document).filter(id__in=document_id_list).delete()
|
||
QuerySet(Paragraph).filter(document_id__in=document_id_list).delete()
|
||
delete_problems_and_mappings(document_id_list)
|
||
# 删除向量库
|
||
delete_embedding_by_document_list(document_id_list)
|
||
return True
|
||
|
||
def batch_cancel(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
BatchCancelInstanceSerializer(data=instance).is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
ListenerManagement.update_status(
|
||
QuerySet(Paragraph).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType(instance.get('type')).value, 1),
|
||
).filter(
|
||
task_type_status__in=[State.PENDING.value, State.STARTED.value]
|
||
).filter(
|
||
document_id__in=document_id_list
|
||
).values('id'),
|
||
TaskType(instance.get('type')),
|
||
State.REVOKE
|
||
)
|
||
ListenerManagement.update_status(
|
||
QuerySet(Document).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType(instance.get('type')).value, 1),
|
||
).filter(
|
||
task_type_status__in=[State.PENDING.value, State.STARTED.value]
|
||
).filter(
|
||
id__in=document_id_list
|
||
).values('id'),
|
||
TaskType(instance.get('type')),
|
||
State.REVOKE
|
||
)
|
||
|
||
def batch_edit_hit_handling(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True)
|
||
hit_handling_method = instance.get('hit_handling_method')
|
||
if hit_handling_method is None:
|
||
raise AppApiException(500, _('Hit handling method is required'))
|
||
if hit_handling_method != 'optimization' and hit_handling_method != 'directly_return':
|
||
raise AppApiException(500, _('The hit processing method must be directly_return|optimization'))
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
hit_handling_method = instance.get('hit_handling_method')
|
||
directly_return_similarity = instance.get('directly_return_similarity')
|
||
update_dict = {'hit_handling_method': hit_handling_method}
|
||
if directly_return_similarity is not None:
|
||
update_dict['directly_return_similarity'] = directly_return_similarity
|
||
QuerySet(Document).filter(id__in=document_id_list).update(**update_dict)
|
||
|
||
def batch_refresh(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
state_list = instance.get("state_list")
|
||
knowledge_id = self.data.get('knowledge_id')
|
||
for document_id in document_id_list:
|
||
try:
|
||
DocumentSerializers.Operate(
|
||
data={'knowledge_id': knowledge_id, 'document_id': document_id}).refresh(state_list)
|
||
except AlreadyQueued as e:
|
||
pass
|
||
|
||
class BatchGenerateRelated(serializers.Serializer):
|
||
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
|
||
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
|
||
|
||
def batch_generate_related(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("document_id_list")
|
||
model_id = instance.get("model_id")
|
||
prompt = instance.get("prompt")
|
||
state_list = instance.get('state_list')
|
||
ListenerManagement.update_status(
|
||
QuerySet(Document).filter(id__in=document_id_list),
|
||
TaskType.GENERATE_PROBLEM,
|
||
State.PENDING
|
||
)
|
||
ListenerManagement.update_status(
|
||
QuerySet(Paragraph).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType.GENERATE_PROBLEM.value,
|
||
1),
|
||
).filter(
|
||
task_type_status__in=state_list, document_id__in=document_id_list
|
||
)
|
||
.values('id'),
|
||
TaskType.GENERATE_PROBLEM,
|
||
State.PENDING
|
||
)
|
||
ListenerManagement.get_aggregation_document_status_by_query_set(
|
||
QuerySet(Document).filter(id__in=document_id_list))()
|
||
try:
|
||
for document_id in document_id_list:
|
||
generate_related_by_document_id.delay(document_id, model_id, prompt, state_list)
|
||
except AlreadyQueued as e:
|
||
pass
|
||
|
||
|
||
class FileBufferHandle:
|
||
buffer = None
|
||
|
||
def get_buffer(self, file):
|
||
if self.buffer is None:
|
||
self.buffer = file.read()
|
||
return self.buffer
|