mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 01:33:05 +00:00
1077 lines
57 KiB
Python
1077 lines
57 KiB
Python
# coding=utf-8
|
||
"""
|
||
@project: maxkb
|
||
@Author:虎
|
||
@file: document_serializers.py
|
||
@date:2023/9/22 13:43
|
||
@desc:
|
||
"""
|
||
import logging
|
||
import os
|
||
import re
|
||
import traceback
|
||
import uuid
|
||
from functools import reduce
|
||
from typing import List, Dict
|
||
|
||
import openpyxl
|
||
from celery_once import AlreadyQueued
|
||
from django.core import validators
|
||
from django.db import transaction
|
||
from django.db.models import QuerySet
|
||
from django.db.models.functions import Substr, Reverse
|
||
from django.http import HttpResponse
|
||
from drf_yasg import openapi
|
||
from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE
|
||
from rest_framework import serializers
|
||
from xlwt import Utils
|
||
|
||
from common.db.search import native_search, native_page_search
|
||
from common.event import ListenerManagement
|
||
from common.event.common import work_thread_pool
|
||
from common.exception.app_exception import AppApiException
|
||
from common.handle.impl.doc_split_handle import DocSplitHandle
|
||
from common.handle.impl.html_split_handle import HTMLSplitHandle
|
||
from common.handle.impl.pdf_split_handle import PdfSplitHandle
|
||
from common.handle.impl.qa.csv_parse_qa_handle import CsvParseQAHandle
|
||
from common.handle.impl.qa.xls_parse_qa_handle import XlsParseQAHandle
|
||
from common.handle.impl.qa.xlsx_parse_qa_handle import XlsxParseQAHandle
|
||
from common.handle.impl.table.csv_parse_table_handle import CsvSplitHandle
|
||
from common.handle.impl.table.xls_parse_table_handle import XlsSplitHandle
|
||
from common.handle.impl.table.xlsx_parse_table_handle import XlsxSplitHandle
|
||
from common.handle.impl.text_split_handle import TextSplitHandle
|
||
from common.mixins.api_mixin import ApiMixin
|
||
from common.util.common import post, flat_map
|
||
from common.util.field_message import ErrMessage
|
||
from common.util.file_util import get_file_content
|
||
from common.util.fork import Fork
|
||
from common.util.split_model import get_split_model
|
||
from dataset.models.data_set import DataSet, Document, Paragraph, Problem, Type, ProblemParagraphMapping, Image, \
|
||
TaskType, State
|
||
from dataset.serializers.common_serializers import BatchSerializer, MetaSerializer, ProblemParagraphManage, \
|
||
get_embedding_model_id_by_dataset_id
|
||
from dataset.serializers.paragraph_serializers import ParagraphSerializers, ParagraphInstanceSerializer
|
||
from dataset.task import sync_web_document, generate_related_by_document_id
|
||
from embedding.task.embedding import embedding_by_document, delete_embedding_by_document_list, \
|
||
delete_embedding_by_document, update_embedding_dataset_id, delete_embedding_by_paragraph_ids, \
|
||
embedding_by_document_list
|
||
from smartdoc.conf import PROJECT_DIR
|
||
|
||
parse_qa_handle_list = [XlsParseQAHandle(), CsvParseQAHandle(), XlsxParseQAHandle()]
|
||
parse_table_handle_list = [CsvSplitHandle(), XlsSplitHandle(), XlsxSplitHandle()]
|
||
|
||
|
||
class FileBufferHandle:
|
||
buffer = None
|
||
|
||
def get_buffer(self, file):
|
||
if self.buffer is None:
|
||
self.buffer = file.read()
|
||
return self.buffer
|
||
|
||
|
||
class CancelInstanceSerializer(serializers.Serializer):
|
||
type = serializers.IntegerField(required=True, error_messages=ErrMessage.boolean(
|
||
"任务类型"))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
_type = self.data.get('type')
|
||
try:
|
||
TaskType(_type)
|
||
except Exception as e:
|
||
raise AppApiException(500, '任务类型不支持')
|
||
|
||
|
||
class DocumentEditInstanceSerializer(ApiMixin, serializers.Serializer):
|
||
meta = serializers.DictField(required=False)
|
||
name = serializers.CharField(required=False, max_length=128, min_length=1,
|
||
error_messages=ErrMessage.char(
|
||
"文档名称"))
|
||
hit_handling_method = serializers.CharField(required=False, validators=[
|
||
validators.RegexValidator(regex=re.compile("^optimization|directly_return$"),
|
||
message="类型只支持optimization|directly_return",
|
||
code=500)
|
||
], error_messages=ErrMessage.char("命中处理方式"))
|
||
|
||
directly_return_similarity = serializers.FloatField(required=False,
|
||
max_value=2,
|
||
min_value=0,
|
||
error_messages=ErrMessage.float(
|
||
"直接返回分数"))
|
||
|
||
is_active = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(
|
||
"文档是否可用"))
|
||
|
||
@staticmethod
|
||
def get_meta_valid_map():
|
||
dataset_meta_valid_map = {
|
||
Type.base: MetaSerializer.BaseMeta,
|
||
Type.web: MetaSerializer.WebMeta
|
||
}
|
||
return dataset_meta_valid_map
|
||
|
||
def is_valid(self, *, document: Document = None):
|
||
super().is_valid(raise_exception=True)
|
||
if 'meta' in self.data and self.data.get('meta') is not None:
|
||
dataset_meta_valid_map = self.get_meta_valid_map()
|
||
valid_class = dataset_meta_valid_map.get(document.type)
|
||
valid_class(data=self.data.get('meta')).is_valid(raise_exception=True)
|
||
|
||
|
||
class DocumentWebInstanceSerializer(ApiMixin, serializers.Serializer):
|
||
source_url_list = serializers.ListField(required=True,
|
||
child=serializers.CharField(required=True, error_messages=ErrMessage.char(
|
||
"文档地址")),
|
||
error_messages=ErrMessage.char(
|
||
"文档地址列表"))
|
||
selector = serializers.CharField(required=False, allow_null=True, allow_blank=True,
|
||
error_messages=ErrMessage.char(
|
||
"选择器"))
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [openapi.Parameter(name='file',
|
||
in_=openapi.IN_FORM,
|
||
type=openapi.TYPE_ARRAY,
|
||
items=openapi.Items(type=openapi.TYPE_FILE),
|
||
required=True,
|
||
description='上传文件'),
|
||
openapi.Parameter(name='dataset_id',
|
||
in_=openapi.IN_PATH,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='知识库id'),
|
||
]
|
||
|
||
|
||
class DocumentInstanceSerializer(ApiMixin, serializers.Serializer):
|
||
name = serializers.CharField(required=True,
|
||
error_messages=ErrMessage.char("文档名称"),
|
||
max_length=128,
|
||
min_length=1)
|
||
|
||
paragraphs = ParagraphInstanceSerializer(required=False, many=True, allow_null=True)
|
||
|
||
@staticmethod
|
||
def get_request_body_api():
|
||
return openapi.Schema(
|
||
type=openapi.TYPE_OBJECT,
|
||
required=['name', 'paragraphs'],
|
||
properties={
|
||
'name': openapi.Schema(type=openapi.TYPE_STRING, title="文档名称", description="文档名称"),
|
||
'paragraphs': openapi.Schema(type=openapi.TYPE_ARRAY, title="段落列表", description="段落列表",
|
||
items=ParagraphSerializers.Create.get_request_body_api())
|
||
}
|
||
)
|
||
|
||
|
||
class DocumentInstanceQASerializer(ApiMixin, serializers.Serializer):
|
||
file_list = serializers.ListSerializer(required=True,
|
||
error_messages=ErrMessage.list("文件列表"),
|
||
child=serializers.FileField(required=True,
|
||
error_messages=ErrMessage.file("文件")))
|
||
|
||
|
||
class DocumentInstanceTableSerializer(ApiMixin, serializers.Serializer):
|
||
file_list = serializers.ListSerializer(required=True,
|
||
error_messages=ErrMessage.list("文件列表"),
|
||
child=serializers.FileField(required=True,
|
||
error_messages=ErrMessage.file("文件")))
|
||
|
||
|
||
class DocumentSerializers(ApiMixin, serializers.Serializer):
|
||
class Export(ApiMixin, serializers.Serializer):
|
||
type = serializers.CharField(required=True, validators=[
|
||
validators.RegexValidator(regex=re.compile("^csv|excel$"),
|
||
message="模版类型只支持excel|csv",
|
||
code=500)
|
||
], error_messages=ErrMessage.char("模版类型"))
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [openapi.Parameter(name='type',
|
||
in_=openapi.IN_QUERY,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='导出模板类型csv|excel'),
|
||
|
||
]
|
||
|
||
def export(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
|
||
if self.data.get('type') == 'csv':
|
||
file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'csv_template.csv'), "rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'text/cxv',
|
||
'Content-Disposition': 'attachment; filename="csv_template.csv"'})
|
||
elif self.data.get('type') == 'excel':
|
||
file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'excel_template.xlsx'), "rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'application/vnd.ms-excel',
|
||
'Content-Disposition': 'attachment; filename="excel_template.xlsx"'})
|
||
|
||
def table_export(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
|
||
if self.data.get('type') == 'csv':
|
||
file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'MaxKB表格模板.csv'), "rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'text/cxv',
|
||
'Content-Disposition': 'attachment; filename="csv_template.csv"'})
|
||
elif self.data.get('type') == 'excel':
|
||
file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'MaxKB表格模板.xlsx'), "rb")
|
||
content = file.read()
|
||
file.close()
|
||
return HttpResponse(content, status=200, headers={'Content-Type': 'application/vnd.ms-excel',
|
||
'Content-Disposition': 'attachment; filename="excel_template.xlsx"'})
|
||
|
||
class Migrate(ApiMixin, serializers.Serializer):
|
||
dataset_id = serializers.UUIDField(required=True,
|
||
error_messages=ErrMessage.char(
|
||
"知识库id"))
|
||
target_dataset_id = serializers.UUIDField(required=True,
|
||
error_messages=ErrMessage.char(
|
||
"目标知识库id"))
|
||
document_id_list = serializers.ListField(required=True, error_messages=ErrMessage.char("文档列表"),
|
||
child=serializers.UUIDField(required=True,
|
||
error_messages=ErrMessage.uuid("文档id")))
|
||
|
||
@transaction.atomic
|
||
def migrate(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
dataset_id = self.data.get('dataset_id')
|
||
target_dataset_id = self.data.get('target_dataset_id')
|
||
dataset = QuerySet(DataSet).filter(id=dataset_id).first()
|
||
target_dataset = QuerySet(DataSet).filter(id=target_dataset_id).first()
|
||
document_id_list = self.data.get('document_id_list')
|
||
document_list = QuerySet(Document).filter(dataset_id=dataset_id, id__in=document_id_list)
|
||
paragraph_list = QuerySet(Paragraph).filter(dataset_id=dataset_id, document_id__in=document_id_list)
|
||
|
||
problem_paragraph_mapping_list = QuerySet(ProblemParagraphMapping).filter(paragraph__in=paragraph_list)
|
||
problem_list = QuerySet(Problem).filter(
|
||
id__in=[problem_paragraph_mapping.problem_id for problem_paragraph_mapping in
|
||
problem_paragraph_mapping_list])
|
||
target_problem_list = list(
|
||
QuerySet(Problem).filter(content__in=[problem.content for problem in problem_list],
|
||
dataset_id=target_dataset_id))
|
||
target_handle_problem_list = [
|
||
self.get_target_dataset_problem(target_dataset_id, problem_paragraph_mapping,
|
||
problem_list, target_problem_list) for
|
||
problem_paragraph_mapping
|
||
in
|
||
problem_paragraph_mapping_list]
|
||
|
||
create_problem_list = [problem for problem, is_create in target_handle_problem_list if
|
||
is_create is not None and is_create]
|
||
# 插入问题
|
||
QuerySet(Problem).bulk_create(create_problem_list)
|
||
# 修改mapping
|
||
QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list, ['problem_id', 'dataset_id'])
|
||
# 修改文档
|
||
if dataset.type == Type.base.value and target_dataset.type == Type.web.value:
|
||
document_list.update(dataset_id=target_dataset_id, type=Type.web,
|
||
meta={'source_url': '', 'selector': ''})
|
||
elif target_dataset.type == Type.base.value and dataset.type == Type.web.value:
|
||
document_list.update(dataset_id=target_dataset_id, type=Type.base,
|
||
meta={})
|
||
else:
|
||
document_list.update(dataset_id=target_dataset_id)
|
||
model_id = None
|
||
if dataset.embedding_mode_id != target_dataset.embedding_mode_id:
|
||
model_id = get_embedding_model_id_by_dataset_id(target_dataset_id)
|
||
|
||
pid_list = [paragraph.id for paragraph in paragraph_list]
|
||
# 修改段落信息
|
||
paragraph_list.update(dataset_id=target_dataset_id)
|
||
# 修改向量信息
|
||
if model_id:
|
||
delete_embedding_by_paragraph_ids(pid_list)
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id__in=document_id_list),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
embedding_by_document_list.delay(document_id_list, model_id)
|
||
else:
|
||
update_embedding_dataset_id(pid_list, target_dataset_id)
|
||
|
||
@staticmethod
|
||
def get_target_dataset_problem(target_dataset_id: str,
|
||
problem_paragraph_mapping,
|
||
source_problem_list,
|
||
target_problem_list):
|
||
source_problem_list = [source_problem for source_problem in source_problem_list if
|
||
source_problem.id == problem_paragraph_mapping.problem_id]
|
||
problem_paragraph_mapping.dataset_id = target_dataset_id
|
||
if len(source_problem_list) > 0:
|
||
problem_content = source_problem_list[-1].content
|
||
problem_list = [problem for problem in target_problem_list if problem.content == problem_content]
|
||
if len(problem_list) > 0:
|
||
problem = problem_list[-1]
|
||
problem_paragraph_mapping.problem_id = problem.id
|
||
return problem, False
|
||
else:
|
||
problem = Problem(id=uuid.uuid1(), dataset_id=target_dataset_id, content=problem_content)
|
||
target_problem_list.append(problem)
|
||
problem_paragraph_mapping.problem_id = problem.id
|
||
return problem, True
|
||
return None
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [openapi.Parameter(name='dataset_id',
|
||
in_=openapi.IN_PATH,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='知识库id'),
|
||
openapi.Parameter(name='target_dataset_id',
|
||
in_=openapi.IN_PATH,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='目标知识库id')
|
||
]
|
||
|
||
@staticmethod
|
||
def get_request_body_api():
|
||
return openapi.Schema(
|
||
type=openapi.TYPE_ARRAY,
|
||
items=openapi.Schema(type=openapi.TYPE_STRING),
|
||
title='文档id列表',
|
||
description="文档id列表"
|
||
)
|
||
|
||
class Query(ApiMixin, serializers.Serializer):
|
||
# 知识库id
|
||
dataset_id = serializers.UUIDField(required=True,
|
||
error_messages=ErrMessage.char(
|
||
"知识库id"))
|
||
|
||
name = serializers.CharField(required=False, max_length=128,
|
||
min_length=1,
|
||
error_messages=ErrMessage.char(
|
||
"文档名称"))
|
||
hit_handling_method = serializers.CharField(required=False, error_messages=ErrMessage.char("命中处理方式"))
|
||
is_active = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean("文档是否可用"))
|
||
status = serializers.CharField(required=False, error_messages=ErrMessage.char("文档状态"))
|
||
|
||
def get_query_set(self):
|
||
query_set = QuerySet(model=Document)
|
||
query_set = query_set.filter(**{'dataset_id': self.data.get("dataset_id")})
|
||
if 'name' in self.data and self.data.get('name') is not None:
|
||
query_set = query_set.filter(**{'name__icontains': self.data.get('name')})
|
||
if 'hit_handling_method' in self.data and self.data.get('hit_handling_method') is not None:
|
||
query_set = query_set.filter(**{'hit_handling_method': self.data.get('hit_handling_method')})
|
||
if 'is_active' in self.data and self.data.get('is_active') is not None:
|
||
query_set = query_set.filter(**{'is_active': self.data.get('is_active')})
|
||
if 'status' in self.data and self.data.get('status') is not None:
|
||
query_set = query_set.filter(**{'status': self.data.get('status')})
|
||
query_set = query_set.order_by('-create_time')
|
||
return query_set
|
||
|
||
def list(self, with_valid=False):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
query_set = self.get_query_set()
|
||
return native_search(query_set, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql')))
|
||
|
||
def page(self, current_page, page_size):
|
||
query_set = self.get_query_set()
|
||
return native_page_search(current_page, page_size, query_set, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql')))
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [openapi.Parameter(name='name',
|
||
in_=openapi.IN_QUERY,
|
||
type=openapi.TYPE_STRING,
|
||
required=False,
|
||
description='文档名称'),
|
||
openapi.Parameter(name='hit_handling_method', in_=openapi.IN_QUERY,
|
||
type=openapi.TYPE_STRING,
|
||
required=False,
|
||
description='文档命中处理方式')]
|
||
|
||
@staticmethod
|
||
def get_response_body_api():
|
||
return openapi.Schema(type=openapi.TYPE_ARRAY,
|
||
title="文档列表", description="文档列表",
|
||
items=DocumentSerializers.Operate.get_response_body_api())
|
||
|
||
class Sync(ApiMixin, serializers.Serializer):
|
||
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
|
||
"文档id"))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
first = QuerySet(Document).filter(id=document_id).first()
|
||
if first is None:
|
||
raise AppApiException(500, "文档id不存在")
|
||
if first.type != Type.web:
|
||
raise AppApiException(500, "只有web站点类型才支持同步")
|
||
|
||
def sync(self, with_valid=True, with_embedding=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
document = QuerySet(Document).filter(id=document_id).first()
|
||
state = State.SUCCESS
|
||
if document.type != Type.web:
|
||
return True
|
||
try:
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id),
|
||
TaskType.SYNC,
|
||
State.PENDING)
|
||
source_url = document.meta.get('source_url')
|
||
selector_list = document.meta.get('selector').split(
|
||
" ") if 'selector' in document.meta and document.meta.get('selector') is not None else []
|
||
result = Fork(source_url, selector_list).fork()
|
||
if result.status == 200:
|
||
# 删除段落
|
||
QuerySet(model=Paragraph).filter(document_id=document_id).delete()
|
||
# 删除问题
|
||
QuerySet(model=ProblemParagraphMapping).filter(document_id=document_id).delete()
|
||
# 删除向量库
|
||
delete_embedding_by_document(document_id)
|
||
paragraphs = get_split_model('web.md').parse(result.content)
|
||
document.char_length = reduce(lambda x, y: x + y,
|
||
[len(p.get('content')) for p in paragraphs],
|
||
0)
|
||
document.save()
|
||
document_paragraph_model = DocumentSerializers.Create.get_paragraph_model(document, paragraphs)
|
||
|
||
paragraph_model_list = document_paragraph_model.get('paragraph_model_list')
|
||
problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list')
|
||
problem_model_list, problem_paragraph_mapping_list = ProblemParagraphManage(
|
||
problem_paragraph_object_list, document.dataset_id).to_problem_model_list()
|
||
# 批量插入段落
|
||
QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None
|
||
# 批量插入问题
|
||
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
|
||
# 插入关联问题
|
||
QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len(
|
||
problem_paragraph_mapping_list) > 0 else None
|
||
# 向量化
|
||
if with_embedding:
|
||
embedding_model_id = get_embedding_model_id_by_dataset_id(document.dataset_id)
|
||
embedding_by_document.delay(document_id, embedding_model_id)
|
||
|
||
else:
|
||
state = State.FAILURE
|
||
except Exception as e:
|
||
logging.getLogger("max_kb_error").error(f'{str(e)}:{traceback.format_exc()}')
|
||
state = State.FAILURE
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id),
|
||
TaskType.SYNC,
|
||
state)
|
||
ListenerManagement.update_status(QuerySet(Paragraph).filter(document_id=document_id),
|
||
TaskType.SYNC,
|
||
state)
|
||
return True
|
||
|
||
class Operate(ApiMixin, serializers.Serializer):
|
||
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
|
||
"文档id"))
|
||
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char("数据集id"))
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [openapi.Parameter(name='dataset_id',
|
||
in_=openapi.IN_PATH,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='知识库id'),
|
||
openapi.Parameter(name='document_id',
|
||
in_=openapi.IN_PATH,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='文档id')
|
||
]
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
if not QuerySet(Document).filter(id=document_id).exists():
|
||
raise AppApiException(500, "文档id不存在")
|
||
|
||
def export(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document = QuerySet(Document).filter(id=self.data.get("document_id")).first()
|
||
paragraph_list = native_search(QuerySet(Paragraph).filter(document_id=self.data.get("document_id")),
|
||
get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "dataset", 'sql',
|
||
'list_paragraph_document_name.sql')))
|
||
problem_mapping_list = native_search(
|
||
QuerySet(ProblemParagraphMapping).filter(document_id=self.data.get("document_id")), get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_problem_mapping.sql')),
|
||
with_table_name=True)
|
||
data_dict, document_dict = self.merge_problem(paragraph_list, problem_mapping_list, [document])
|
||
workbook = self.get_workbook(data_dict, document_dict)
|
||
response = HttpResponse(content_type='application/vnd.ms-excel')
|
||
response['Content-Disposition'] = f'attachment; filename="data.xlsx"'
|
||
workbook.save(response)
|
||
return response
|
||
|
||
@staticmethod
|
||
def get_workbook(data_dict, document_dict):
|
||
# 创建工作簿对象
|
||
workbook = openpyxl.Workbook()
|
||
workbook.remove_sheet(workbook.active)
|
||
if len(data_dict.keys()) == 0:
|
||
data_dict['sheet'] = []
|
||
for sheet_id in data_dict:
|
||
# 添加工作表
|
||
worksheet = workbook.create_sheet(document_dict.get(sheet_id))
|
||
data = [
|
||
['分段标题(选填)', '分段内容(必填,问题答案,最长不超过4096个字符)', '问题(选填,单元格内一行一个)'],
|
||
*data_dict.get(sheet_id, [])
|
||
]
|
||
# 写入数据到工作表
|
||
for row_idx, row in enumerate(data):
|
||
for col_idx, col in enumerate(row):
|
||
cell = worksheet.cell(row=row_idx + 1, column=col_idx + 1)
|
||
if isinstance(col, str):
|
||
col = re.sub(ILLEGAL_CHARACTERS_RE, '', col)
|
||
cell.value = col
|
||
# 创建HttpResponse对象返回Excel文件
|
||
return workbook
|
||
|
||
@staticmethod
|
||
def merge_problem(paragraph_list: List[Dict], problem_mapping_list: List[Dict], document_list):
|
||
result = {}
|
||
document_dict = {}
|
||
|
||
for paragraph in paragraph_list:
|
||
problem_list = [problem_mapping.get('content') for problem_mapping in problem_mapping_list if
|
||
problem_mapping.get('paragraph_id') == paragraph.get('id')]
|
||
document_sheet = result.get(paragraph.get('document_id'))
|
||
document_name = DocumentSerializers.Operate.reset_document_name(paragraph.get('document_name'))
|
||
d = document_dict.get(document_name)
|
||
if d is None:
|
||
document_dict[document_name] = {paragraph.get('document_id')}
|
||
else:
|
||
d.add(paragraph.get('document_id'))
|
||
|
||
if document_sheet is None:
|
||
result[paragraph.get('document_id')] = [[paragraph.get('title'), paragraph.get('content'),
|
||
'\n'.join(problem_list)]]
|
||
else:
|
||
document_sheet.append([paragraph.get('title'), paragraph.get('content'), '\n'.join(problem_list)])
|
||
for document in document_list:
|
||
if document.id not in result:
|
||
document_name = DocumentSerializers.Operate.reset_document_name(document.name)
|
||
result[document.id] = [[]]
|
||
d = document_dict.get(document_name)
|
||
if d is None:
|
||
document_dict[document_name] = {document.id}
|
||
else:
|
||
d.add(document.id)
|
||
result_document_dict = {}
|
||
for d_name in document_dict:
|
||
for index, d_id in enumerate(document_dict.get(d_name)):
|
||
result_document_dict[d_id] = d_name if index == 0 else d_name + str(index)
|
||
return result, result_document_dict
|
||
|
||
@staticmethod
|
||
def reset_document_name(document_name):
|
||
if document_name is None or not Utils.valid_sheet_name(document_name):
|
||
return "Sheet"
|
||
return document_name.strip()
|
||
|
||
def one(self, with_valid=False):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
query_set = QuerySet(model=Document)
|
||
query_set = query_set.filter(**{'id': self.data.get("document_id")})
|
||
return native_search(query_set, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql')), with_search_one=True)
|
||
|
||
def edit(self, instance: Dict, with_valid=False):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
_document = QuerySet(Document).get(id=self.data.get("document_id"))
|
||
if with_valid:
|
||
DocumentEditInstanceSerializer(data=instance).is_valid(document=_document)
|
||
update_keys = ['name', 'is_active', 'hit_handling_method', 'directly_return_similarity', 'meta']
|
||
for update_key in update_keys:
|
||
if update_key in instance and instance.get(update_key) is not None:
|
||
_document.__setattr__(update_key, instance.get(update_key))
|
||
_document.save()
|
||
return self.one()
|
||
|
||
def refresh(self, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id = self.data.get("document_id")
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id), TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
ListenerManagement.update_status(QuerySet(Paragraph).filter(document_id=document_id),
|
||
TaskType.EMBEDDING,
|
||
State.PENDING)
|
||
ListenerManagement.get_aggregation_document_status(document_id)()
|
||
embedding_model_id = get_embedding_model_id_by_dataset_id(dataset_id=self.data.get('dataset_id'))
|
||
try:
|
||
embedding_by_document.delay(document_id, embedding_model_id)
|
||
except AlreadyQueued as e:
|
||
raise AppApiException(500, "任务正在执行中,请勿重复下发")
|
||
|
||
def cancel(self, instance, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
CancelInstanceSerializer(data=instance).is_valid()
|
||
document_id = self.data.get("document_id")
|
||
ListenerManagement.update_status(QuerySet(Paragraph).annotate(
|
||
reversed_status=Reverse('status'),
|
||
task_type_status=Substr('reversed_status', TaskType(instance.get('type')).value,
|
||
TaskType(instance.get('type')).value),
|
||
).filter(task_type_status__in=[State.PENDING.value, State.STARTED.value]).filter(
|
||
document_id=document_id).values('id'),
|
||
TaskType(instance.get('type')),
|
||
State.REVOKE)
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id), TaskType(instance.get('type')),
|
||
State.REVOKE)
|
||
|
||
return True
|
||
|
||
@transaction.atomic
|
||
def delete(self):
|
||
document_id = self.data.get("document_id")
|
||
QuerySet(model=Document).filter(id=document_id).delete()
|
||
# 删除段落
|
||
QuerySet(model=Paragraph).filter(document_id=document_id).delete()
|
||
# 删除问题
|
||
QuerySet(model=ProblemParagraphMapping).filter(document_id=document_id).delete()
|
||
# 删除向量库
|
||
delete_embedding_by_document(document_id)
|
||
return True
|
||
|
||
@staticmethod
|
||
def get_response_body_api():
|
||
return openapi.Schema(
|
||
type=openapi.TYPE_OBJECT,
|
||
required=['id', 'name', 'char_length', 'user_id', 'paragraph_count', 'is_active'
|
||
'update_time', 'create_time'],
|
||
properties={
|
||
'id': openapi.Schema(type=openapi.TYPE_STRING, title="id",
|
||
description="id", default="xx"),
|
||
'name': openapi.Schema(type=openapi.TYPE_STRING, title="名称",
|
||
description="名称", default="测试知识库"),
|
||
'char_length': openapi.Schema(type=openapi.TYPE_INTEGER, title="字符数",
|
||
description="字符数", default=10),
|
||
'user_id': openapi.Schema(type=openapi.TYPE_STRING, title="用户id", description="用户id"),
|
||
'paragraph_count': openapi.Schema(type=openapi.TYPE_INTEGER, title="文档数量",
|
||
description="文档数量", default=1),
|
||
'is_active': openapi.Schema(type=openapi.TYPE_BOOLEAN, title="是否可用",
|
||
description="是否可用", default=True),
|
||
'update_time': openapi.Schema(type=openapi.TYPE_STRING, title="修改时间",
|
||
description="修改时间",
|
||
default="1970-01-01 00:00:00"),
|
||
'create_time': openapi.Schema(type=openapi.TYPE_STRING, title="创建时间",
|
||
description="创建时间",
|
||
default="1970-01-01 00:00:00"
|
||
)
|
||
}
|
||
)
|
||
|
||
@staticmethod
|
||
def get_request_body_api():
|
||
return openapi.Schema(
|
||
type=openapi.TYPE_OBJECT,
|
||
properties={
|
||
'name': openapi.Schema(type=openapi.TYPE_STRING, title="文档名称", description="文档名称"),
|
||
'is_active': openapi.Schema(type=openapi.TYPE_BOOLEAN, title="是否可用", description="是否可用"),
|
||
'hit_handling_method': openapi.Schema(type=openapi.TYPE_STRING, title="命中处理方式",
|
||
description="ai优化:optimization,直接返回:directly_return"),
|
||
'directly_return_similarity': openapi.Schema(type=openapi.TYPE_NUMBER, title="直接返回分数",
|
||
default=0.9),
|
||
'meta': openapi.Schema(type=openapi.TYPE_OBJECT, title="文档元数据",
|
||
description="文档元数据->web:{source_url:xxx,selector:'xxx'},base:{}"),
|
||
}
|
||
)
|
||
|
||
class Create(ApiMixin, serializers.Serializer):
|
||
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
|
||
"文档id"))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
if not QuerySet(DataSet).filter(id=self.data.get('dataset_id')).exists():
|
||
raise AppApiException(10000, "知识库id不存在")
|
||
return True
|
||
|
||
@staticmethod
|
||
def post_embedding(result, document_id, dataset_id):
|
||
DocumentSerializers.Operate(
|
||
data={'dataset_id': dataset_id, 'document_id': document_id}).refresh()
|
||
return result
|
||
|
||
@staticmethod
|
||
def parse_qa_file(file):
|
||
get_buffer = FileBufferHandle().get_buffer
|
||
for parse_qa_handle in parse_qa_handle_list:
|
||
if parse_qa_handle.support(file, get_buffer):
|
||
return parse_qa_handle.handle(file, get_buffer, save_image)
|
||
raise AppApiException(500, '不支持的文件格式')
|
||
|
||
@staticmethod
|
||
def parse_table_file(file):
|
||
get_buffer = FileBufferHandle().get_buffer
|
||
for parse_table_handle in parse_table_handle_list:
|
||
if parse_table_handle.support(file, get_buffer):
|
||
return parse_table_handle.handle(file, get_buffer, save_image)
|
||
raise AppApiException(500, '不支持的文件格式')
|
||
|
||
def save_qa(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
DocumentInstanceQASerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
file_list = instance.get('file_list')
|
||
document_list = flat_map([self.parse_qa_file(file) for file in file_list])
|
||
return DocumentSerializers.Batch(data={'dataset_id': self.data.get('dataset_id')}).batch_save(document_list)
|
||
|
||
def save_table(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
DocumentInstanceTableSerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
file_list = instance.get('file_list')
|
||
document_list = flat_map([self.parse_table_file(file) for file in file_list])
|
||
return DocumentSerializers.Batch(data={'dataset_id': self.data.get('dataset_id')}).batch_save(document_list)
|
||
|
||
@post(post_function=post_embedding)
|
||
@transaction.atomic
|
||
def save(self, instance: Dict, with_valid=False, **kwargs):
|
||
if with_valid:
|
||
DocumentInstanceSerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
dataset_id = self.data.get('dataset_id')
|
||
document_paragraph_model = self.get_document_paragraph_model(dataset_id, instance)
|
||
|
||
document_model = document_paragraph_model.get('document')
|
||
paragraph_model_list = document_paragraph_model.get('paragraph_model_list')
|
||
problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list')
|
||
problem_model_list, problem_paragraph_mapping_list = (ProblemParagraphManage(problem_paragraph_object_list,
|
||
dataset_id)
|
||
.to_problem_model_list())
|
||
# 插入文档
|
||
document_model.save()
|
||
# 批量插入段落
|
||
QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None
|
||
# 批量插入问题
|
||
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
|
||
# 批量插入关联问题
|
||
QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len(
|
||
problem_paragraph_mapping_list) > 0 else None
|
||
document_id = str(document_model.id)
|
||
return DocumentSerializers.Operate(
|
||
data={'dataset_id': dataset_id, 'document_id': document_id}).one(
|
||
with_valid=True), document_id, dataset_id
|
||
|
||
def save_web(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
DocumentWebInstanceSerializer(data=instance).is_valid(raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
dataset_id = self.data.get('dataset_id')
|
||
source_url_list = instance.get('source_url_list')
|
||
selector = instance.get('selector')
|
||
sync_web_document.delay(dataset_id, source_url_list, selector)
|
||
|
||
@staticmethod
|
||
def get_paragraph_model(document_model, paragraph_list: List):
|
||
dataset_id = document_model.dataset_id
|
||
paragraph_model_dict_list = [ParagraphSerializers.Create(
|
||
data={'dataset_id': dataset_id, 'document_id': str(document_model.id)}).get_paragraph_problem_model(
|
||
dataset_id, document_model.id, paragraph) for paragraph in paragraph_list]
|
||
|
||
paragraph_model_list = []
|
||
problem_paragraph_object_list = []
|
||
for paragraphs in paragraph_model_dict_list:
|
||
paragraph = paragraphs.get('paragraph')
|
||
for problem_model in paragraphs.get('problem_paragraph_object_list'):
|
||
problem_paragraph_object_list.append(problem_model)
|
||
paragraph_model_list.append(paragraph)
|
||
|
||
return {'document': document_model, 'paragraph_model_list': paragraph_model_list,
|
||
'problem_paragraph_object_list': problem_paragraph_object_list}
|
||
|
||
@staticmethod
|
||
def get_document_paragraph_model(dataset_id, instance: Dict):
|
||
document_model = Document(
|
||
**{'dataset_id': dataset_id,
|
||
'id': uuid.uuid1(),
|
||
'name': instance.get('name'),
|
||
'char_length': reduce(lambda x, y: x + y,
|
||
[len(p.get('content')) for p in instance.get('paragraphs', [])],
|
||
0),
|
||
'meta': instance.get('meta') if instance.get('meta') is not None else {},
|
||
'type': instance.get('type') if instance.get('type') is not None else Type.base})
|
||
|
||
return DocumentSerializers.Create.get_paragraph_model(document_model,
|
||
instance.get('paragraphs') if
|
||
'paragraphs' in instance else [])
|
||
|
||
@staticmethod
|
||
def get_request_body_api():
|
||
return DocumentInstanceSerializer.get_request_body_api()
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [openapi.Parameter(name='dataset_id',
|
||
in_=openapi.IN_PATH,
|
||
type=openapi.TYPE_STRING,
|
||
required=True,
|
||
description='知识库id')
|
||
]
|
||
|
||
class Split(ApiMixin, serializers.Serializer):
|
||
file = serializers.ListField(required=True, error_messages=ErrMessage.list(
|
||
"文件列表"))
|
||
|
||
limit = serializers.IntegerField(required=False, error_messages=ErrMessage.integer(
|
||
"分段长度"))
|
||
|
||
patterns = serializers.ListField(required=False,
|
||
child=serializers.CharField(required=True, error_messages=ErrMessage.char(
|
||
"分段标识")),
|
||
error_messages=ErrMessage.uuid(
|
||
"分段标识列表"))
|
||
|
||
with_filter = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(
|
||
"自动清洗"))
|
||
|
||
def is_valid(self, *, raise_exception=True):
|
||
super().is_valid(raise_exception=True)
|
||
files = self.data.get('file')
|
||
for f in files:
|
||
if f.size > 1024 * 1024 * 100:
|
||
raise AppApiException(500, "上传文件最大不能超过100MB")
|
||
|
||
@staticmethod
|
||
def get_request_params_api():
|
||
return [
|
||
openapi.Parameter(name='file',
|
||
in_=openapi.IN_FORM,
|
||
type=openapi.TYPE_ARRAY,
|
||
items=openapi.Items(type=openapi.TYPE_FILE),
|
||
required=True,
|
||
description='上传文件'),
|
||
openapi.Parameter(name='limit',
|
||
in_=openapi.IN_FORM,
|
||
required=False,
|
||
type=openapi.TYPE_INTEGER, title="分段长度", description="分段长度"),
|
||
openapi.Parameter(name='patterns',
|
||
in_=openapi.IN_FORM,
|
||
required=False,
|
||
type=openapi.TYPE_ARRAY, items=openapi.Items(type=openapi.TYPE_STRING),
|
||
title="分段正则列表", description="分段正则列表"),
|
||
openapi.Parameter(name='with_filter',
|
||
in_=openapi.IN_FORM,
|
||
required=False,
|
||
type=openapi.TYPE_BOOLEAN, title="是否清除特殊字符", description="是否清除特殊字符"),
|
||
]
|
||
|
||
def parse(self):
|
||
file_list = self.data.get("file")
|
||
return list(
|
||
map(lambda f: file_to_paragraph(f, self.data.get("patterns", None), self.data.get("with_filter", None),
|
||
self.data.get("limit", 4096)), file_list))
|
||
|
||
class SplitPattern(ApiMixin, serializers.Serializer):
|
||
@staticmethod
|
||
def list():
|
||
return [{'key': "#", 'value': '(?<=^)# .*|(?<=\\n)# .*'},
|
||
{'key': '##', 'value': '(?<=\\n)(?<!#)## (?!#).*|(?<=^)(?<!#)## (?!#).*'},
|
||
{'key': '###', 'value': "(?<=\\n)(?<!#)### (?!#).*|(?<=^)(?<!#)### (?!#).*"},
|
||
{'key': '####', 'value': "(?<=\\n)(?<!#)#### (?!#).*|(?<=^)(?<!#)#### (?!#).*"},
|
||
{'key': '#####', 'value': "(?<=\\n)(?<!#)##### (?!#).*|(?<=^)(?<!#)##### (?!#).*"},
|
||
{'key': '######', 'value': "(?<=\\n)(?<!#)###### (?!#).*|(?<=^)(?<!#)###### (?!#).*"},
|
||
{'key': '-', 'value': '(?<! )- .*'},
|
||
{'key': '空格', 'value': '(?<! ) (?! )'},
|
||
{'key': '分号', 'value': '(?<!;);(?!;)'}, {'key': '逗号', 'value': '(?<!,),(?!,)'},
|
||
{'key': '句号', 'value': '(?<!。)。(?!。)'}, {'key': '回车', 'value': '(?<!\\n)\\n(?!\\n)'},
|
||
{'key': '空行', 'value': '(?<!\\n)\\n\\n(?!\\n)'}]
|
||
|
||
class Batch(ApiMixin, serializers.Serializer):
|
||
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("知识库id"))
|
||
|
||
@staticmethod
|
||
def get_request_body_api():
|
||
return openapi.Schema(type=openapi.TYPE_ARRAY, items=DocumentSerializers.Create.get_request_body_api())
|
||
|
||
@staticmethod
|
||
def post_embedding(document_list, dataset_id):
|
||
for document_dict in document_list:
|
||
DocumentSerializers.Operate(
|
||
data={'dataset_id': dataset_id, 'document_id': document_dict.get('id')}).refresh()
|
||
return document_list
|
||
|
||
@post(post_function=post_embedding)
|
||
@transaction.atomic
|
||
def batch_save(self, instance_list: List[Dict], with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
DocumentInstanceSerializer(many=True, data=instance_list).is_valid(raise_exception=True)
|
||
dataset_id = self.data.get("dataset_id")
|
||
document_model_list = []
|
||
paragraph_model_list = []
|
||
problem_paragraph_object_list = []
|
||
# 插入文档
|
||
for document in instance_list:
|
||
document_paragraph_dict_model = DocumentSerializers.Create.get_document_paragraph_model(dataset_id,
|
||
document)
|
||
document_model_list.append(document_paragraph_dict_model.get('document'))
|
||
for paragraph in document_paragraph_dict_model.get('paragraph_model_list'):
|
||
paragraph_model_list.append(paragraph)
|
||
for problem_paragraph_object in document_paragraph_dict_model.get('problem_paragraph_object_list'):
|
||
problem_paragraph_object_list.append(problem_paragraph_object)
|
||
|
||
problem_model_list, problem_paragraph_mapping_list = (ProblemParagraphManage(problem_paragraph_object_list,
|
||
dataset_id)
|
||
.to_problem_model_list())
|
||
# 插入文档
|
||
QuerySet(Document).bulk_create(document_model_list) if len(document_model_list) > 0 else None
|
||
# 批量插入段落
|
||
QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None
|
||
# 批量插入问题
|
||
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
|
||
# 批量插入关联问题
|
||
QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len(
|
||
problem_paragraph_mapping_list) > 0 else None
|
||
# 查询文档
|
||
query_set = QuerySet(model=Document)
|
||
if len(document_model_list) == 0:
|
||
return [],
|
||
query_set = query_set.filter(**{'id__in': [d.id for d in document_model_list]})
|
||
return native_search(query_set, select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql')),
|
||
with_search_one=False), dataset_id
|
||
|
||
@staticmethod
|
||
def _batch_sync(document_id_list: List[str]):
|
||
for document_id in document_id_list:
|
||
DocumentSerializers.Sync(data={'document_id': document_id}).sync()
|
||
|
||
def batch_sync(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
# 异步同步
|
||
work_thread_pool.submit(self._batch_sync,
|
||
instance.get('id_list'))
|
||
return True
|
||
|
||
@transaction.atomic
|
||
def batch_delete(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True)
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
QuerySet(Document).filter(id__in=document_id_list).delete()
|
||
QuerySet(Paragraph).filter(document_id__in=document_id_list).delete()
|
||
QuerySet(ProblemParagraphMapping).filter(document_id__in=document_id_list).delete()
|
||
# 删除向量库
|
||
delete_embedding_by_document_list(document_id_list)
|
||
return True
|
||
|
||
def batch_edit_hit_handling(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True)
|
||
hit_handling_method = instance.get('hit_handling_method')
|
||
if hit_handling_method is None:
|
||
raise AppApiException(500, '命中处理方式必填')
|
||
if hit_handling_method != 'optimization' and hit_handling_method != 'directly_return':
|
||
raise AppApiException(500, '命中处理方式必须为directly_return|optimization')
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
hit_handling_method = instance.get('hit_handling_method')
|
||
directly_return_similarity = instance.get('directly_return_similarity')
|
||
update_dict = {'hit_handling_method': hit_handling_method}
|
||
if directly_return_similarity is not None:
|
||
update_dict['directly_return_similarity'] = directly_return_similarity
|
||
QuerySet(Document).filter(id__in=document_id_list).update(**update_dict)
|
||
|
||
def batch_refresh(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("id_list")
|
||
with transaction.atomic():
|
||
dataset_id = self.data.get('dataset_id')
|
||
for document_id in document_id_list:
|
||
try:
|
||
DocumentSerializers.Operate(
|
||
data={'dataset_id': dataset_id, 'document_id': document_id}).refresh()
|
||
except AlreadyQueued as e:
|
||
pass
|
||
|
||
class GenerateRelated(ApiMixin, serializers.Serializer):
|
||
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("文档id"))
|
||
|
||
def is_valid(self, *, raise_exception=False):
|
||
super().is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
if not QuerySet(Document).filter(id=document_id).exists():
|
||
raise AppApiException(500, "文档id不存在")
|
||
|
||
def generate_related(self, model_id, prompt, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id = self.data.get('document_id')
|
||
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id),
|
||
TaskType.GENERATE_PROBLEM,
|
||
State.PENDING)
|
||
ListenerManagement.update_status(QuerySet(Paragraph).filter(document_id=document_id),
|
||
TaskType.GENERATE_PROBLEM,
|
||
State.PENDING)
|
||
ListenerManagement.get_aggregation_document_status(document_id)()
|
||
try:
|
||
generate_related_by_document_id.delay(document_id, model_id, prompt)
|
||
except AlreadyQueued as e:
|
||
raise AppApiException(500, "任务正在执行中,请勿重复下发")
|
||
|
||
class BatchGenerateRelated(ApiMixin, serializers.Serializer):
|
||
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("知识库id"))
|
||
|
||
@transaction.atomic
|
||
def batch_generate_related(self, instance: Dict, with_valid=True):
|
||
if with_valid:
|
||
self.is_valid(raise_exception=True)
|
||
document_id_list = instance.get("document_id_list")
|
||
model_id = instance.get("model_id")
|
||
prompt = instance.get("prompt")
|
||
for document_id in document_id_list:
|
||
DocumentSerializers.GenerateRelated(data={'document_id': document_id}).generate_related(model_id,
|
||
prompt)
|
||
|
||
|
||
class FileBufferHandle:
|
||
buffer = None
|
||
|
||
def get_buffer(self, file):
|
||
if self.buffer is None:
|
||
self.buffer = file.read()
|
||
return self.buffer
|
||
|
||
|
||
default_split_handle = TextSplitHandle()
|
||
split_handles = [HTMLSplitHandle(), DocSplitHandle(), PdfSplitHandle(), default_split_handle]
|
||
|
||
|
||
def save_image(image_list):
|
||
if image_list is not None and len(image_list) > 0:
|
||
QuerySet(Image).bulk_create(image_list)
|
||
|
||
|
||
def file_to_paragraph(file, pattern_list: List, with_filter: bool, limit: int):
|
||
get_buffer = FileBufferHandle().get_buffer
|
||
for split_handle in split_handles:
|
||
if split_handle.support(file, get_buffer):
|
||
return split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, save_image)
|
||
return default_split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, save_image)
|