MaxKB/apps/models_provider/impl/zhipu_model_provider/model/llm.py
CaptainB 543f83a822
Some checks are pending
sync2gitee / repo-sync (push) Waiting to run
Typos Check / Spell Check with Typos (push) Waiting to run
refactor: update ZhipuChatModel to use BaseChatOpenAI and improve token counting
--bug=1061305 --user=刘瑞斌 【应用】ai对话启用工具后部分模型(智谱)不统计tokens https://www.tapd.cn/62980211/s/1791683
2025-10-30 11:12:43 +08:00

56 lines
1.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
"""
@project: maxkb
@Author
@file llm.py
@date2024/4/28 11:42
@desc:
"""
from typing import Dict, List
from langchain_core.messages import BaseMessage, get_buffer_string
from common.config.tokenizer_manage_config import TokenizerManage
from models_provider.base_model_provider import MaxKBBaseModel
from models_provider.impl.base_chat_open_ai import BaseChatOpenAI
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class ZhipuChatModel(MaxKBBaseModel, BaseChatOpenAI):
@staticmethod
def is_cache_model():
return False
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
zhipuai_chat = ZhipuChatModel(
api_key=model_credential.get('api_key'),
model=model_name,
base_url='https://open.bigmodel.cn/api/paas/v4',
extra_body=optional_params,
streaming=model_kwargs.get('streaming', False),
custom_get_token_ids=custom_get_token_ids
)
return zhipuai_chat
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
try:
return super().get_num_tokens_from_messages(messages)
except Exception as e:
tokenizer = TokenizerManage.get_tokenizer()
return sum([len(tokenizer.encode(get_buffer_string([m]))) for m in messages])
def get_num_tokens(self, text: str) -> int:
try:
return super().get_num_tokens(text)
except Exception as e:
tokenizer = TokenizerManage.get_tokenizer()
return len(tokenizer.encode(text))