mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-27 20:42:52 +00:00
55 lines
2.2 KiB
Python
55 lines
2.2 KiB
Python
# coding=utf-8
|
||
"""
|
||
@project: MaxKB
|
||
@Author:虎
|
||
@file: reranker.py
|
||
@date:2024/9/10 9:45
|
||
@desc:
|
||
"""
|
||
from typing import Sequence, Optional, Any, Dict
|
||
|
||
from langchain_core.callbacks import Callbacks
|
||
from langchain_core.documents import BaseDocumentCompressor, Document
|
||
from xinference_client.client.restful.restful_client import RESTfulRerankModelHandle
|
||
|
||
from models_provider.base_model_provider import MaxKBBaseModel
|
||
|
||
|
||
class XInferenceReranker(MaxKBBaseModel, BaseDocumentCompressor):
|
||
server_url: Optional[str]
|
||
"""URL of the xinference server"""
|
||
model_uid: Optional[str]
|
||
"""UID of the launched model"""
|
||
api_key: Optional[str]
|
||
|
||
@staticmethod
|
||
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
||
return XInferenceReranker(server_url=model_credential.get('server_url'), model_uid=model_name,
|
||
api_key=model_credential.get('api_key'), top_n=model_kwargs.get('top_n', 3))
|
||
|
||
top_n: Optional[int] = 3
|
||
|
||
def compress_documents(self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None) -> \
|
||
Sequence[Document]:
|
||
if documents is None or len(documents) == 0:
|
||
return []
|
||
client: Any
|
||
if documents is None or len(documents) == 0:
|
||
return []
|
||
try:
|
||
from xinference.client import RESTfulClient
|
||
except ImportError:
|
||
try:
|
||
from xinference_client import RESTfulClient
|
||
except ImportError as e:
|
||
raise ImportError(
|
||
"Could not import RESTfulClient from xinference. Please install it"
|
||
" with `pip install xinference` or `pip install xinference_client`."
|
||
) from e
|
||
|
||
client = RESTfulClient(self.server_url, self.api_key)
|
||
model: RESTfulRerankModelHandle = client.get_model(self.model_uid)
|
||
res = model.rerank([document.page_content for document in documents], query, self.top_n, return_documents=True)
|
||
return [Document(page_content=d.get('document', {}).get('text'),
|
||
metadata={'relevance_score': d.get('relevance_score')}) for d in res.get('results', [])]
|