MaxKB/apps/models_provider/impl/xf_model_provider/model/image.py

101 lines
4.0 KiB
Python

# coding=utf-8
import base64
import os
from typing import Dict, Any, List, Optional, Iterator
#from docutils.utils import SystemMessage
from langchain_community.chat_models.sparkllm import ChatSparkLLM, _convert_delta_to_message_chunk
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.messages import BaseMessage, ChatMessage, HumanMessage, AIMessage, AIMessageChunk
from langchain_core.outputs import ChatGenerationChunk
from models_provider.base_model_provider import MaxKBBaseModel
class ImageMessage(HumanMessage):
content: str
def convert_message_to_dict(message: BaseMessage) -> dict:
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, ImageMessage):
message_dict = {"role": "user", "content": message.content, "content_type": "image"}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
# If function call only, content is None not empty string
if message_dict["content"] == "":
message_dict["content"] = None
if "tool_calls" in message.additional_kwargs:
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
# If tool calls only, content is None not empty string
if message_dict["content"] == "":
message_dict["content"] = None
# elif isinstance(message, SystemMessage):
# message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
class XFSparkImage(MaxKBBaseModel, ChatSparkLLM):
spark_app_id: str
spark_api_key: str
spark_api_secret: str
spark_api_url: str
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
return XFSparkImage(
spark_app_id=model_credential.get('spark_app_id'),
spark_api_key=model_credential.get('spark_api_key'),
spark_api_secret=model_credential.get('spark_api_secret'),
spark_api_url=model_credential.get('spark_api_url'),
**optional_params
)
@staticmethod
def generate_message(prompt: str, image) -> list[BaseMessage]:
if image is None:
cwd = os.path.dirname(os.path.abspath(__file__))
with open(f'{cwd}/img_1.png', 'rb') as f:
base64_image = base64.b64encode(f.read()).decode("utf-8")
return [ImageMessage(f'data:image/jpeg;base64,{base64_image}'), HumanMessage(prompt)]
return [HumanMessage(prompt)]
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
default_chunk_class = AIMessageChunk
self.client.arun(
[convert_message_to_dict(m) for m in messages],
self.spark_user_id,
self.model_kwargs,
streaming=True,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
delta = content["data"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk)
yield cg_chunk
@staticmethod
def is_cache_model():
return False