MaxKB/apps/knowledge/task/embedding.py

271 lines
9.1 KiB
Python

# coding=utf-8
import traceback
from typing import List
from celery_once import QueueOnce
from django.db.models import QuerySet
from django.utils.translation import gettext_lazy as _
from common.config.embedding_config import ModelManage
from common.event import ListenerManagement, UpdateProblemArgs, UpdateEmbeddingKnowledgeIdArgs, \
UpdateEmbeddingDocumentIdArgs
from common.utils.logger import maxkb_logger
from knowledge.models import Document, TaskType, State
from knowledge.serializers.common import drop_knowledge_index
from models_provider.models import Model
from models_provider.tools import get_model
from ops import celery_app
def get_embedding_model(model_id, exception_handler=lambda e: maxkb_logger.error(
_('Failed to obtain vector model: {error} {traceback}').format(
error=str(e),
traceback=traceback.format_exc()
))):
try:
model = QuerySet(Model).filter(id=model_id).first()
def convert_to_int(value):
if isinstance(value, str):
try:
return int(value)
except ValueError:
return value
return value
s = {
p.get('field'): convert_to_int(p.get('default_value'))
for p in model.model_params_form
if p.get('default_value') is not None
}
embedding_model = ModelManage.get_model(model_id, lambda _id: get_model(model, **{**s}))
except Exception as e:
exception_handler(e)
raise e
return embedding_model
@celery_app.task(base=QueueOnce, once={'keys': ['paragraph_id']}, name='celery:embedding_by_paragraph')
def embedding_by_paragraph(paragraph_id, model_id):
embedding_model = get_embedding_model(model_id)
ListenerManagement.embedding_by_paragraph(paragraph_id, embedding_model)
@celery_app.task(base=QueueOnce, once={'keys': ['paragraph_id_list']}, name='celery:embedding_by_paragraph_data_list')
def embedding_by_paragraph_data_list(data_list, paragraph_id_list, model_id):
embedding_model = get_embedding_model(model_id)
ListenerManagement.embedding_by_paragraph_data_list(data_list, paragraph_id_list, embedding_model)
@celery_app.task(base=QueueOnce, once={'keys': ['paragraph_id_list']}, name='celery:embedding_by_paragraph_list')
def embedding_by_paragraph_list(paragraph_id_list, model_id):
embedding_model = get_embedding_model(model_id)
ListenerManagement.embedding_by_paragraph_list(paragraph_id_list, embedding_model)
@celery_app.task(base=QueueOnce, once={'keys': ['document_id']}, name='celery:embedding_by_document')
def embedding_by_document(document_id, model_id, state_list=None):
"""
向量化文档
@param state_list:
@param document_id: 文档id
@param model_id 向量模型
:return: None
"""
if state_list is None:
state_list = [State.PENDING.value, State.STARTED.value, State.SUCCESS.value, State.FAILURE.value,
State.REVOKE.value,
State.REVOKED.value, State.IGNORED.value]
def exception_handler(e):
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id), TaskType.EMBEDDING,
State.FAILURE)
maxkb_logger.error(
_('Failed to obtain vector model: {error} {traceback}').format(
error=str(e),
traceback=traceback.format_exc()
))
embedding_model = get_embedding_model(model_id, exception_handler)
#
ListenerManagement.embedding_by_document(document_id, embedding_model, state_list)
@celery_app.task(name='celery:embedding_by_document_list')
def embedding_by_document_list(document_id_list, model_id):
"""
向量化文档
@param document_id_list: 文档id列表
@param model_id 向量模型
:return: None
"""
for document_id in document_id_list:
embedding_by_document.delay(document_id, model_id)
@celery_app.task(base=QueueOnce, once={'keys': ['knowledge_id']}, name='celery:embedding_by_knowledge')
def embedding_by_knowledge(knowledge_id, model_id):
"""
向量化知识库
@param knowledge_id: 知识库id
@param model_id 向量模型
:return: None
"""
maxkb_logger.info(_('Start--->Vectorized knowledge: {knowledge_id}').format(knowledge_id=knowledge_id))
try:
ListenerManagement.delete_embedding_by_knowledge(knowledge_id)
drop_knowledge_index(knowledge_id=knowledge_id)
document_list = QuerySet(Document).filter(knowledge_id=knowledge_id)
maxkb_logger.info(_('Knowledge documentation: {document_names}').format(
document_names=", ".join([d.name for d in document_list])))
for document in document_list:
try:
embedding_by_document.delay(document.id, model_id)
except Exception as e:
pass
except Exception as e:
maxkb_logger.error(
_('Vectorized knowledge: {knowledge_id} error {error} {traceback}'.format(knowledge_id=knowledge_id,
error=str(e),
traceback=traceback.format_exc())))
finally:
maxkb_logger.info(_('End--->Vectorized knowledge: {knowledge_id}').format(knowledge_id=knowledge_id))
def embedding_by_problem(args, model_id):
"""
向量话问题
@param args: 问题对象
@param model_id: 模型id
@return:
"""
embedding_model = get_embedding_model(model_id)
ListenerManagement.embedding_by_problem(args, embedding_model)
def embedding_by_data_list(args: List, model_id):
embedding_model = get_embedding_model(model_id)
ListenerManagement.embedding_by_data_list(args, embedding_model)
def delete_embedding_by_document(document_id):
"""
删除指定文档id的向量
@param document_id: 文档id
@return: None
"""
ListenerManagement.delete_embedding_by_document(document_id)
def delete_embedding_by_document_list(document_id_list: List[str]):
"""
删除指定文档列表的向量数据
@param document_id_list: 文档id列表
@return: None
"""
ListenerManagement.delete_embedding_by_document_list(document_id_list)
def delete_embedding_by_knowledge(knowledge_id):
"""
删除指定数据集向量数据
@param knowledge_id: 数据集id
@return: None
"""
ListenerManagement.delete_embedding_by_knowledge(knowledge_id)
def delete_embedding_by_paragraph(paragraph_id):
"""
删除指定段落的向量数据
@param paragraph_id: 段落id
@return: None
"""
ListenerManagement.delete_embedding_by_paragraph(paragraph_id)
def delete_embedding_by_source(source_id):
"""
删除指定资源id的向量数据
@param source_id: 资源id
@return: None
"""
ListenerManagement.delete_embedding_by_source(source_id)
def disable_embedding_by_paragraph(paragraph_id):
"""
禁用某个段落id的向量
@param paragraph_id: 段落id
@return: None
"""
ListenerManagement.disable_embedding_by_paragraph(paragraph_id)
def enable_embedding_by_paragraph(paragraph_id):
"""
开启某个段落id的向量数据
@param paragraph_id: 段落id
@return: None
"""
ListenerManagement.enable_embedding_by_paragraph(paragraph_id)
def delete_embedding_by_source_ids(source_ids: List[str]):
"""
删除向量根据source_id_list
@param source_ids:
@return:
"""
ListenerManagement.delete_embedding_by_source_ids(source_ids)
def update_problem_embedding(problem_id: str, problem_content: str, model_id):
"""
更新问题
@param problem_id:
@param problem_content:
@param model_id:
@return:
"""
model = get_embedding_model(model_id)
ListenerManagement.update_problem(UpdateProblemArgs(problem_id, problem_content, model))
def update_embedding_knowledge_id(paragraph_id_list, target_knowledge_id):
"""
修改向量数据到指定知识库
@param paragraph_id_list: 指定段落的向量数据
@param target_knowledge_id: 知识库id
@return:
"""
ListenerManagement.update_embedding_knowledge_id(
UpdateEmbeddingKnowledgeIdArgs(paragraph_id_list, target_knowledge_id))
def delete_embedding_by_paragraph_ids(paragraph_ids: List[str]):
"""
删除指定段落列表的向量数据
@param paragraph_ids: 段落列表
@return: None
"""
ListenerManagement.delete_embedding_by_paragraph_ids(paragraph_ids)
def update_embedding_document_id(paragraph_id_list, target_document_id, target_knowledge_id,
target_embedding_model_id=None):
target_embedding_model = get_embedding_model(
target_embedding_model_id) if target_embedding_model_id is not None else None
ListenerManagement.update_embedding_document_id(
UpdateEmbeddingDocumentIdArgs(paragraph_id_list, target_document_id, target_knowledge_id,
target_embedding_model))
def delete_embedding_by_knowledge_id_list(knowledge_id_list):
ListenerManagement.delete_embedding_by_knowledge_id_list(knowledge_id_list)