mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 10:12:51 +00:00
235 lines
7.3 KiB
Python
235 lines
7.3 KiB
Python
# coding=utf-8
|
||
"""
|
||
@project: MaxKB
|
||
@Author:虎
|
||
@file: embedding.py
|
||
@date:2024/8/19 14:13
|
||
@desc:
|
||
"""
|
||
|
||
import logging
|
||
import traceback
|
||
from typing import List
|
||
|
||
from celery_once import QueueOnce
|
||
from django.db.models import QuerySet
|
||
|
||
from common.config.embedding_config import ModelManage
|
||
from common.event import ListenerManagement, UpdateProblemArgs, UpdateEmbeddingDatasetIdArgs, \
|
||
UpdateEmbeddingDocumentIdArgs
|
||
from dataset.models import Document
|
||
from ops import celery_app
|
||
from setting.models import Model
|
||
from setting.models_provider import get_model
|
||
|
||
max_kb_error = logging.getLogger("max_kb_error")
|
||
max_kb = logging.getLogger("max_kb")
|
||
|
||
|
||
def get_embedding_model(model_id):
|
||
model = QuerySet(Model).filter(id=model_id).first()
|
||
embedding_model = ModelManage.get_model(model_id,
|
||
lambda _id: get_model(model))
|
||
return embedding_model
|
||
|
||
|
||
@celery_app.task(base=QueueOnce, once={'keys': ['paragraph_id']}, name='celery:embedding_by_paragraph')
|
||
def embedding_by_paragraph(paragraph_id, model_id):
|
||
embedding_model = get_embedding_model(model_id)
|
||
ListenerManagement.embedding_by_paragraph(paragraph_id, embedding_model)
|
||
|
||
|
||
@celery_app.task(base=QueueOnce, once={'keys': ['paragraph_id_list']}, name='celery:embedding_by_paragraph_data_list')
|
||
def embedding_by_paragraph_data_list(data_list, paragraph_id_list, model_id):
|
||
embedding_model = get_embedding_model(model_id)
|
||
ListenerManagement.embedding_by_paragraph_data_list(data_list, paragraph_id_list, embedding_model)
|
||
|
||
|
||
@celery_app.task(base=QueueOnce, once={'keys': ['paragraph_id_list']}, name='celery:embedding_by_paragraph_list')
|
||
def embedding_by_paragraph_list(paragraph_id_list, model_id):
|
||
embedding_model = get_embedding_model(model_id)
|
||
ListenerManagement.embedding_by_paragraph_list(paragraph_id_list, embedding_model)
|
||
|
||
|
||
@celery_app.task(base=QueueOnce, once={'keys': ['document_id']}, name='celery:embedding_by_document')
|
||
def embedding_by_document(document_id, model_id):
|
||
"""
|
||
向量化文档
|
||
@param document_id: 文档id
|
||
@param model_id 向量模型
|
||
:return: None
|
||
"""
|
||
embedding_model = get_embedding_model(model_id)
|
||
ListenerManagement.embedding_by_document(document_id, embedding_model)
|
||
|
||
|
||
@celery_app.task(name='celery:embedding_by_document_list')
|
||
def embedding_by_document_list(document_id_list, model_id):
|
||
"""
|
||
向量化文档
|
||
@param document_id_list: 文档id列表
|
||
@param model_id 向量模型
|
||
:return: None
|
||
"""
|
||
print(document_id_list)
|
||
for document_id in document_id_list:
|
||
embedding_by_document.delay(document_id, model_id)
|
||
|
||
|
||
@celery_app.task(base=QueueOnce, once={'keys': ['dataset_id']}, name='celery:embedding_by_dataset')
|
||
def embedding_by_dataset(dataset_id, model_id):
|
||
"""
|
||
向量化知识库
|
||
@param dataset_id: 知识库id
|
||
@param model_id 向量模型
|
||
:return: None
|
||
"""
|
||
max_kb.info(f"开始--->向量化数据集:{dataset_id}")
|
||
try:
|
||
ListenerManagement.delete_embedding_by_dataset(dataset_id)
|
||
document_list = QuerySet(Document).filter(dataset_id=dataset_id)
|
||
max_kb.info(f"数据集文档:{[d.name for d in document_list]}")
|
||
for document in document_list:
|
||
try:
|
||
embedding_by_document.delay(document.id, model_id)
|
||
except Exception as e:
|
||
pass
|
||
except Exception as e:
|
||
max_kb_error.error(f'向量化数据集:{dataset_id}出现错误{str(e)}{traceback.format_exc()}')
|
||
finally:
|
||
max_kb.info(f"结束--->向量化数据集:{dataset_id}")
|
||
|
||
|
||
def embedding_by_problem(args, model_id):
|
||
"""
|
||
向量话问题
|
||
@param args: 问题对象
|
||
@param model_id: 模型id
|
||
@return:
|
||
"""
|
||
embedding_model = get_embedding_model(model_id)
|
||
ListenerManagement.embedding_by_problem(args, embedding_model)
|
||
|
||
|
||
def embedding_by_data_list(args: List, model_id):
|
||
embedding_model = get_embedding_model(model_id)
|
||
ListenerManagement.embedding_by_data_list(args, embedding_model)
|
||
|
||
|
||
def delete_embedding_by_document(document_id):
|
||
"""
|
||
删除指定文档id的向量
|
||
@param document_id: 文档id
|
||
@return: None
|
||
"""
|
||
|
||
ListenerManagement.delete_embedding_by_document(document_id)
|
||
|
||
|
||
def delete_embedding_by_document_list(document_id_list: List[str]):
|
||
"""
|
||
删除指定文档列表的向量数据
|
||
@param document_id_list: 文档id列表
|
||
@return: None
|
||
"""
|
||
ListenerManagement.delete_embedding_by_document_list(document_id_list)
|
||
|
||
|
||
def delete_embedding_by_dataset(dataset_id):
|
||
"""
|
||
删除指定数据集向量数据
|
||
@param dataset_id: 数据集id
|
||
@return: None
|
||
"""
|
||
ListenerManagement.delete_embedding_by_dataset(dataset_id)
|
||
|
||
|
||
def delete_embedding_by_paragraph(paragraph_id):
|
||
"""
|
||
删除指定段落的向量数据
|
||
@param paragraph_id: 段落id
|
||
@return: None
|
||
"""
|
||
ListenerManagement.delete_embedding_by_paragraph(paragraph_id)
|
||
|
||
|
||
def delete_embedding_by_source(source_id):
|
||
"""
|
||
删除指定资源id的向量数据
|
||
@param source_id: 资源id
|
||
@return: None
|
||
"""
|
||
ListenerManagement.delete_embedding_by_source(source_id)
|
||
|
||
|
||
def disable_embedding_by_paragraph(paragraph_id):
|
||
"""
|
||
禁用某个段落id的向量
|
||
@param paragraph_id: 段落id
|
||
@return: None
|
||
"""
|
||
ListenerManagement.disable_embedding_by_paragraph(paragraph_id)
|
||
|
||
|
||
def enable_embedding_by_paragraph(paragraph_id):
|
||
"""
|
||
开启某个段落id的向量数据
|
||
@param paragraph_id: 段落id
|
||
@return: None
|
||
"""
|
||
ListenerManagement.enable_embedding_by_paragraph(paragraph_id)
|
||
|
||
|
||
def delete_embedding_by_source_ids(source_ids: List[str]):
|
||
"""
|
||
删除向量根据source_id_list
|
||
@param source_ids:
|
||
@return:
|
||
"""
|
||
ListenerManagement.delete_embedding_by_source_ids(source_ids)
|
||
|
||
|
||
def update_problem_embedding(problem_id: str, problem_content: str, model_id):
|
||
"""
|
||
更新问题
|
||
@param problem_id:
|
||
@param problem_content:
|
||
@param model_id:
|
||
@return:
|
||
"""
|
||
model = get_embedding_model(model_id)
|
||
ListenerManagement.update_problem(UpdateProblemArgs(problem_id, problem_content, model))
|
||
|
||
|
||
def update_embedding_dataset_id(paragraph_id_list, target_dataset_id):
|
||
"""
|
||
修改向量数据到指定知识库
|
||
@param paragraph_id_list: 指定段落的向量数据
|
||
@param target_dataset_id: 知识库id
|
||
@return:
|
||
"""
|
||
|
||
ListenerManagement.update_embedding_dataset_id(
|
||
UpdateEmbeddingDatasetIdArgs(paragraph_id_list, target_dataset_id))
|
||
|
||
|
||
def delete_embedding_by_paragraph_ids(paragraph_ids: List[str]):
|
||
"""
|
||
删除指定段落列表的向量数据
|
||
@param paragraph_ids: 段落列表
|
||
@return: None
|
||
"""
|
||
ListenerManagement.delete_embedding_by_paragraph_ids(paragraph_ids)
|
||
|
||
|
||
def update_embedding_document_id(paragraph_id_list, target_document_id, target_dataset_id,
|
||
target_embedding_model_id=None):
|
||
target_embedding_model = get_embedding_model(
|
||
target_embedding_model_id) if target_embedding_model_id is not None else None
|
||
ListenerManagement.update_embedding_document_id(
|
||
UpdateEmbeddingDocumentIdArgs(paragraph_id_list, target_document_id, target_dataset_id, target_embedding_model))
|
||
|
||
|
||
def delete_embedding_by_dataset_id_list(dataset_id_list):
|
||
ListenerManagement.delete_embedding_by_dataset_id_list(dataset_id_list)
|