mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 10:12:51 +00:00
219 lines
9.9 KiB
Python
219 lines
9.9 KiB
Python
# coding=utf-8
|
||
"""
|
||
@project: maxkb
|
||
@Author:虎
|
||
@file: pg_vector.py
|
||
@date:2023/10/19 15:28
|
||
@desc:
|
||
"""
|
||
import json
|
||
import os
|
||
import uuid
|
||
from abc import ABC, abstractmethod
|
||
from typing import Dict, List
|
||
|
||
from django.db.models import QuerySet
|
||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||
|
||
from common.config.embedding_config import EmbeddingModel
|
||
from common.db.search import generate_sql_by_query_dict
|
||
from common.db.sql_execute import select_list
|
||
from common.util.file_util import get_file_content
|
||
from common.util.ts_vecto_util import to_ts_vector, to_query
|
||
from embedding.models import Embedding, SourceType, SearchMode
|
||
from embedding.vector.base_vector import BaseVectorStore
|
||
from smartdoc.conf import PROJECT_DIR
|
||
|
||
|
||
class PGVector(BaseVectorStore):
|
||
|
||
def delete_by_source_ids(self, source_ids: List[str], source_type: str):
|
||
QuerySet(Embedding).filter(source_id__in=source_ids, source_type=source_type).delete()
|
||
|
||
def update_by_source_ids(self, source_ids: List[str], instance: Dict):
|
||
QuerySet(Embedding).filter(source_id__in=source_ids).update(**instance)
|
||
|
||
def embed_documents(self, text_list: List[str]):
|
||
embedding = EmbeddingModel.get_embedding_model()
|
||
return embedding.embed_documents(text_list)
|
||
|
||
def embed_query(self, text: str):
|
||
embedding = EmbeddingModel.get_embedding_model()
|
||
return embedding.embed_query(text)
|
||
|
||
def vector_is_create(self) -> bool:
|
||
# 项目启动默认是创建好的 不需要再创建
|
||
return True
|
||
|
||
def vector_create(self):
|
||
return True
|
||
|
||
def _save(self, text, source_type: SourceType, dataset_id: str, document_id: str, paragraph_id: str, source_id: str,
|
||
is_active: bool,
|
||
embedding: HuggingFaceEmbeddings):
|
||
text_embedding = embedding.embed_query(text)
|
||
embedding = Embedding(id=uuid.uuid1(),
|
||
dataset_id=dataset_id,
|
||
document_id=document_id,
|
||
is_active=is_active,
|
||
paragraph_id=paragraph_id,
|
||
source_id=source_id,
|
||
embedding=text_embedding,
|
||
source_type=source_type,
|
||
search_vector=to_ts_vector(text))
|
||
embedding.save()
|
||
return True
|
||
|
||
def _batch_save(self, text_list: List[Dict], embedding: HuggingFaceEmbeddings):
|
||
texts = [row.get('text') for row in text_list]
|
||
embeddings = embedding.embed_documents(texts)
|
||
embedding_list = [Embedding(id=uuid.uuid1(),
|
||
document_id=text_list[index].get('document_id'),
|
||
paragraph_id=text_list[index].get('paragraph_id'),
|
||
dataset_id=text_list[index].get('dataset_id'),
|
||
is_active=text_list[index].get('is_active', True),
|
||
source_id=text_list[index].get('source_id'),
|
||
source_type=text_list[index].get('source_type'),
|
||
embedding=embeddings[index],
|
||
search_vector=to_ts_vector(text_list[index]['text'])) for index in
|
||
range(0, len(text_list))]
|
||
QuerySet(Embedding).bulk_create(embedding_list) if len(embedding_list) > 0 else None
|
||
return True
|
||
|
||
def hit_test(self, query_text, dataset_id_list: list[str], exclude_document_id_list: list[str], top_number: int,
|
||
similarity: float,
|
||
search_mode: SearchMode,
|
||
embedding: HuggingFaceEmbeddings):
|
||
if dataset_id_list is None or len(dataset_id_list) == 0:
|
||
return []
|
||
exclude_dict = {}
|
||
embedding_query = embedding.embed_query(query_text)
|
||
query_set = QuerySet(Embedding).filter(dataset_id__in=dataset_id_list, is_active=True)
|
||
if exclude_document_id_list is not None and len(exclude_document_id_list) > 0:
|
||
exclude_dict.__setitem__('document_id__in', exclude_document_id_list)
|
||
query_set = query_set.exclude(**exclude_dict)
|
||
for search_handle in search_handle_list:
|
||
if search_handle.support(search_mode):
|
||
return search_handle.handle(query_set, query_text, embedding_query, top_number, similarity, search_mode)
|
||
|
||
def query(self, query_text: str, query_embedding: List[float], dataset_id_list: list[str],
|
||
exclude_document_id_list: list[str],
|
||
exclude_paragraph_list: list[str], is_active: bool, top_n: int, similarity: float,
|
||
search_mode: SearchMode):
|
||
exclude_dict = {}
|
||
if dataset_id_list is None or len(dataset_id_list) == 0:
|
||
return []
|
||
query_set = QuerySet(Embedding).filter(dataset_id__in=dataset_id_list, is_active=is_active)
|
||
if exclude_document_id_list is not None and len(exclude_document_id_list) > 0:
|
||
exclude_dict.__setitem__('document_id__in', exclude_document_id_list)
|
||
if exclude_paragraph_list is not None and len(exclude_paragraph_list) > 0:
|
||
exclude_dict.__setitem__('paragraph_id__in', exclude_paragraph_list)
|
||
query_set = query_set.exclude(**exclude_dict)
|
||
for search_handle in search_handle_list:
|
||
if search_handle.support(search_mode):
|
||
return search_handle.handle(query_set, query_text, query_embedding, top_n, similarity, search_mode)
|
||
|
||
def update_by_source_id(self, source_id: str, instance: Dict):
|
||
QuerySet(Embedding).filter(source_id=source_id).update(**instance)
|
||
|
||
def update_by_paragraph_id(self, paragraph_id: str, instance: Dict):
|
||
QuerySet(Embedding).filter(paragraph_id=paragraph_id).update(**instance)
|
||
|
||
def delete_by_dataset_id(self, dataset_id: str):
|
||
QuerySet(Embedding).filter(dataset_id=dataset_id).delete()
|
||
|
||
def delete_by_dataset_id_list(self, dataset_id_list: List[str]):
|
||
QuerySet(Embedding).filter(dataset_id__in=dataset_id_list).delete()
|
||
|
||
def delete_by_document_id(self, document_id: str):
|
||
QuerySet(Embedding).filter(document_id=document_id).delete()
|
||
return True
|
||
|
||
def delete_bu_document_id_list(self, document_id_list: List[str]):
|
||
return QuerySet(Embedding).filter(document_id__in=document_id_list).delete()
|
||
|
||
def delete_by_source_id(self, source_id: str, source_type: str):
|
||
QuerySet(Embedding).filter(source_id=source_id, source_type=source_type).delete()
|
||
return True
|
||
|
||
def delete_by_paragraph_id(self, paragraph_id: str):
|
||
QuerySet(Embedding).filter(paragraph_id=paragraph_id).delete()
|
||
|
||
|
||
class ISearch(ABC):
|
||
@abstractmethod
|
||
def support(self, search_mode: SearchMode):
|
||
pass
|
||
|
||
@abstractmethod
|
||
def handle(self, query_set, query_text, query_embedding, top_number: int,
|
||
similarity: float, search_mode: SearchMode):
|
||
pass
|
||
|
||
|
||
class EmbeddingSearch(ISearch):
|
||
def handle(self,
|
||
query_set,
|
||
query_text,
|
||
query_embedding,
|
||
top_number: int,
|
||
similarity: float,
|
||
search_mode: SearchMode):
|
||
exec_sql, exec_params = generate_sql_by_query_dict({'embedding_query': query_set},
|
||
select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "embedding", 'sql',
|
||
'embedding_search.sql')),
|
||
with_table_name=True)
|
||
embedding_model = select_list(exec_sql,
|
||
[json.dumps(query_embedding), *exec_params, similarity, top_number])
|
||
return embedding_model
|
||
|
||
def support(self, search_mode: SearchMode):
|
||
return search_mode.value == SearchMode.embedding.value
|
||
|
||
|
||
class KeywordsSearch(ISearch):
|
||
def handle(self,
|
||
query_set,
|
||
query_text,
|
||
query_embedding,
|
||
top_number: int,
|
||
similarity: float,
|
||
search_mode: SearchMode):
|
||
exec_sql, exec_params = generate_sql_by_query_dict({'keywords_query': query_set},
|
||
select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "embedding", 'sql',
|
||
'keywords_search.sql')),
|
||
with_table_name=True)
|
||
embedding_model = select_list(exec_sql,
|
||
[to_query(query_text), *exec_params, similarity, top_number])
|
||
return embedding_model
|
||
|
||
def support(self, search_mode: SearchMode):
|
||
return search_mode.value == SearchMode.keywords.value
|
||
|
||
|
||
class BlendSearch(ISearch):
|
||
def handle(self,
|
||
query_set,
|
||
query_text,
|
||
query_embedding,
|
||
top_number: int,
|
||
similarity: float,
|
||
search_mode: SearchMode):
|
||
exec_sql, exec_params = generate_sql_by_query_dict({'embedding_query': query_set},
|
||
select_string=get_file_content(
|
||
os.path.join(PROJECT_DIR, "apps", "embedding", 'sql',
|
||
'blend_search.sql')),
|
||
with_table_name=True)
|
||
embedding_model = select_list(exec_sql,
|
||
[json.dumps(query_embedding), to_query(query_text), *exec_params, similarity,
|
||
top_number])
|
||
return embedding_model
|
||
|
||
def support(self, search_mode: SearchMode):
|
||
return search_mode.value == SearchMode.blend.value
|
||
|
||
|
||
search_handle_list = [EmbeddingSearch(), KeywordsSearch(), BlendSearch()]
|