mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 10:12:51 +00:00
389 lines
13 KiB
Python
389 lines
13 KiB
Python
# coding=utf-8
|
||
"""
|
||
@project: qabot
|
||
@Author:虎
|
||
@file: split_model.py
|
||
@date:2023/9/1 15:12
|
||
@desc:
|
||
"""
|
||
import re
|
||
from functools import reduce
|
||
from typing import List, Dict
|
||
|
||
import jieba
|
||
|
||
|
||
def get_level_block(text, level_content_list, level_content_index, cursor):
|
||
"""
|
||
从文本中获取块数据
|
||
:param text: 文本
|
||
:param level_content_list: 拆分的title数组
|
||
:param level_content_index: 指定的下标
|
||
:return: 拆分后的文本数据
|
||
"""
|
||
start_content: str = level_content_list[level_content_index].get('content')
|
||
next_content = level_content_list[level_content_index + 1].get("content") if level_content_index + 1 < len(
|
||
level_content_list) else None
|
||
start_index = text.index(start_content, cursor)
|
||
end_index = text.index(next_content, start_index + 1) if next_content is not None else len(text)
|
||
return text[start_index:end_index].lstrip(level_content_list[level_content_index]['content']), end_index
|
||
|
||
|
||
def to_tree_obj(content, state='title'):
|
||
"""
|
||
转换为树形对象
|
||
:param content: 文本数据
|
||
:param state: 状态: title block
|
||
:return: 转换后的数据
|
||
"""
|
||
return {'content': content, 'state': state}
|
||
|
||
|
||
def remove_special_symbol(str_source: str):
|
||
"""
|
||
删除特殊字符
|
||
:param str_source: 需要删除的文本数据
|
||
:return: 删除后的数据
|
||
"""
|
||
return str_source
|
||
|
||
|
||
def filter_special_symbol(content: dict):
|
||
"""
|
||
过滤文本中的特殊字符
|
||
:param content: 需要过滤的对象
|
||
:return: 过滤后返回
|
||
"""
|
||
content['content'] = remove_special_symbol(content['content'])
|
||
return content
|
||
|
||
|
||
def flat(tree_data_list: List[dict], parent_chain: List[dict], result: List[dict]):
|
||
"""
|
||
扁平化树形结构数据
|
||
:param tree_data_list: 树形接口数据
|
||
:param parent_chain: 父级数据 传[] 用于递归存储数据
|
||
:param result: 响应数据 传[] 用于递归存放数据
|
||
:return: result 扁平化后的数据
|
||
"""
|
||
if parent_chain is None:
|
||
parent_chain = []
|
||
if result is None:
|
||
result = []
|
||
for tree_data in tree_data_list:
|
||
p = parent_chain.copy()
|
||
p.append(tree_data)
|
||
result.append(to_flat_obj(parent_chain, content=tree_data["content"], state=tree_data["state"]))
|
||
children = tree_data.get('children')
|
||
if children is not None and len(children) > 0:
|
||
flat(children, p, result)
|
||
return result
|
||
|
||
|
||
def to_paragraph(obj: dict):
|
||
"""
|
||
转换为段落
|
||
:param obj: 需要转换的对象
|
||
:return: 段落对象
|
||
"""
|
||
content = obj['content']
|
||
return {"keywords": get_keyword(content),
|
||
'parent_chain': list(map(lambda p: p['content'], obj['parent_chain'])),
|
||
'content': ",".join(list(map(lambda p: p['content'], obj['parent_chain']))) + content}
|
||
|
||
|
||
def get_keyword(content: str):
|
||
"""
|
||
获取content中的关键词
|
||
:param content: 文本
|
||
:return: 关键词数组
|
||
"""
|
||
stopwords = [':', '“', '!', '”', '\n', '\\s']
|
||
cutworms = jieba.lcut(content)
|
||
return list(set(list(filter(lambda k: (k not in stopwords) | len(k) > 1, cutworms))))
|
||
|
||
|
||
def titles_to_paragraph(list_title: List[dict]):
|
||
"""
|
||
将同一父级的title转换为块段落
|
||
:param list_title: 同父级title
|
||
:return: 块段落
|
||
"""
|
||
if len(list_title) > 0:
|
||
content = "\n,".join(
|
||
list(map(lambda d: d['content'].strip("\r\n").strip("\n").strip("\\s"), list_title)))
|
||
|
||
return {'keywords': '',
|
||
'parent_chain': list(
|
||
map(lambda p: p['content'].strip("\r\n").strip("\n").strip("\\s"), list_title[0]['parent_chain'])),
|
||
'content': ",".join(list(
|
||
map(lambda p: p['content'].strip("\r\n").strip("\n").strip("\\s"),
|
||
list_title[0]['parent_chain']))) + content}
|
||
return None
|
||
|
||
|
||
def parse_group_key(level_list: List[dict]):
|
||
"""
|
||
将同级别同父级的title生成段落,加上本身的段落数据形成新的数据
|
||
:param level_list: title n 级数据
|
||
:return: 根据title生成的数据 + 段落数据
|
||
"""
|
||
result = []
|
||
group_data = group_by(list(filter(lambda f: f['state'] == 'title' and len(f['parent_chain']) > 0, level_list)),
|
||
key=lambda d: ",".join(list(map(lambda p: p['content'], d['parent_chain']))))
|
||
result += list(map(lambda group_data_key: titles_to_paragraph(group_data[group_data_key]), group_data))
|
||
result += list(map(to_paragraph, list(filter(lambda f: f['state'] == 'block', level_list))))
|
||
return result
|
||
|
||
|
||
def to_block_paragraph(tree_data_list: List[dict]):
|
||
"""
|
||
转换为块段落对象
|
||
:param tree_data_list: 树数据
|
||
:return: 块段落
|
||
"""
|
||
flat_list = flat(tree_data_list, [], [])
|
||
level_group_dict: dict = group_by(flat_list, key=lambda f: f['level'])
|
||
return list(map(lambda level: parse_group_key(level_group_dict[level]), level_group_dict))
|
||
|
||
|
||
def parse_title_level(text, content_level_pattern: List, index):
|
||
if len(content_level_pattern) == index:
|
||
return []
|
||
result = parse_level(text, content_level_pattern[index])
|
||
if len(result) == 0 and len(content_level_pattern) > index + 1:
|
||
return parse_title_level(text, content_level_pattern, index + 1)
|
||
return result
|
||
|
||
|
||
def parse_level(text, pattern: str):
|
||
"""
|
||
获取正则匹配到的文本
|
||
:param text: 需要匹配的文本
|
||
:param pattern: 正则
|
||
:return: 符合正则的文本
|
||
"""
|
||
level_content_list = list(map(to_tree_obj, re_findall(pattern, text)))
|
||
return list(map(filter_special_symbol, level_content_list))
|
||
|
||
|
||
def re_findall(pattern, text):
|
||
result = re.findall(pattern, text, flags=0)
|
||
return list(filter(lambda r: r is not None and len(r) > 0, reduce(lambda x, y: [*x, *y], list(
|
||
map(lambda row: [*(row if isinstance(row, tuple) else [row])], result)),
|
||
[])))
|
||
|
||
|
||
def to_flat_obj(parent_chain: List[dict], content: str, state: str):
|
||
"""
|
||
将树形属性转换为扁平对象
|
||
:param parent_chain:
|
||
:param content:
|
||
:param state:
|
||
:return:
|
||
"""
|
||
return {'parent_chain': parent_chain, 'level': len(parent_chain), "content": content, 'state': state}
|
||
|
||
|
||
def flat_map(array: List[List]):
|
||
"""
|
||
将二位数组转为一维数组
|
||
:param array: 二维数组
|
||
:return: 一维数组
|
||
"""
|
||
result = []
|
||
for e in array:
|
||
result += e
|
||
return result
|
||
|
||
|
||
def group_by(list_source: List, key):
|
||
"""
|
||
將數組分組
|
||
:param list_source: 需要分組的數組
|
||
:param key: 分組函數
|
||
:return: key->[]
|
||
"""
|
||
result = {}
|
||
for e in list_source:
|
||
k = key(e)
|
||
array = result.get(k) if k in result else []
|
||
array.append(e)
|
||
result[k] = array
|
||
return result
|
||
|
||
|
||
def result_tree_to_paragraph(result_tree: List[dict], result, parent_chain):
|
||
"""
|
||
转换为分段对象
|
||
:param result_tree: 解析文本的树
|
||
:param result: 传[] 用于递归
|
||
:param parent_chain: 传[] 用户递归存储数据
|
||
:return: List[{'problem':'xx','content':'xx'}]
|
||
"""
|
||
for item in result_tree:
|
||
if item.get('state') == 'block':
|
||
result.append({'title': " ".join(parent_chain), 'content': item.get("content")})
|
||
children = item.get("children")
|
||
if children is not None and len(children) > 0:
|
||
result_tree_to_paragraph(children, result, [*parent_chain, item.get('content')])
|
||
return result
|
||
|
||
|
||
def post_handler_paragraph(content: str, limit: int, with_filter: bool):
|
||
"""
|
||
根据文本的最大字符分段
|
||
:param with_filter: 是否过滤特殊字符
|
||
:param content: 需要分段的文本字段
|
||
:param limit: 最大分段字符
|
||
:return: 分段后数据
|
||
"""
|
||
split_list = content.split('\n')
|
||
result = []
|
||
temp_char = ''
|
||
for split in split_list:
|
||
if len(temp_char + split) > limit:
|
||
result.append(temp_char)
|
||
temp_char = ''
|
||
temp_char = temp_char + split + '\n'
|
||
if len(temp_char) > 0:
|
||
result.append(temp_char)
|
||
pattern = "[\\S\\s]{1," + str(limit) + '}'
|
||
# 如果\n 单段超过限制,则继续拆分
|
||
s = list(map(lambda row: filter_special_char(row) if with_filter else row, list(
|
||
reduce(lambda x, y: [*x, *y], list(map(lambda row: list(re.findall(pattern, row)), result)), []))))
|
||
return s
|
||
|
||
|
||
replace_map = {
|
||
re.compile('\n+'): '\n',
|
||
re.compile('\\s+'): ' ',
|
||
re.compile('#+'): "",
|
||
re.compile("\t+"): ''
|
||
}
|
||
|
||
|
||
def filter_special_char(content: str):
|
||
"""
|
||
过滤特殊字段
|
||
:param content: 文本
|
||
:return: 过滤后字段
|
||
"""
|
||
items = replace_map.items()
|
||
for key, value in items:
|
||
content = re.sub(key, value, content)
|
||
return content
|
||
|
||
|
||
class SplitModel:
|
||
|
||
def __init__(self, content_level_pattern, with_filter=True, limit=4096):
|
||
self.content_level_pattern = content_level_pattern
|
||
self.with_filter = with_filter
|
||
if limit is None or limit > 4096:
|
||
limit = 4096
|
||
if limit < 50:
|
||
limit = 50
|
||
self.limit = limit
|
||
|
||
def parse_to_tree(self, text: str, index=0):
|
||
"""
|
||
解析文本
|
||
:param text: 需要解析的文本
|
||
:param index: 从那个正则开始解析
|
||
:return: 解析后的树形结果数据
|
||
"""
|
||
if len(self.content_level_pattern) == index:
|
||
return
|
||
level_content_list = parse_title_level(text, self.content_level_pattern, index)
|
||
cursor = 0
|
||
for i in range(len(level_content_list)):
|
||
block, cursor = get_level_block(text, level_content_list, i, cursor)
|
||
children = self.parse_to_tree(text=block,
|
||
index=index + 1)
|
||
if children is not None and len(children) > 0:
|
||
level_content_list[i]['children'] = children
|
||
else:
|
||
if len(block) > 0:
|
||
level_content_list[i]['children'] = list(
|
||
map(lambda row: to_tree_obj(row, 'block'),
|
||
post_handler_paragraph(block, with_filter=self.with_filter, limit=self.limit)))
|
||
if len(level_content_list) > 0:
|
||
end_index = text.index(level_content_list[0].get('content'))
|
||
if end_index == 0:
|
||
return level_content_list
|
||
other_content = text[0:end_index]
|
||
if len(other_content.strip()) > 0:
|
||
level_content_list = [*level_content_list, *list(
|
||
map(lambda row: to_tree_obj(row, 'block'),
|
||
post_handler_paragraph(other_content, with_filter=self.with_filter, limit=self.limit)))]
|
||
else:
|
||
if len(text.strip()) > 0:
|
||
level_content_list = [*level_content_list, *list(
|
||
map(lambda row: to_tree_obj(row, 'block'),
|
||
post_handler_paragraph(text, with_filter=self.with_filter, limit=self.limit)))]
|
||
return level_content_list
|
||
|
||
def parse(self, text: str):
|
||
"""
|
||
解析文本
|
||
:param text: 文本数据
|
||
:return: 解析后数据 {content:段落数据,keywords:[‘段落关键词’],parent_chain:['段落父级链路']}
|
||
"""
|
||
result_tree = self.parse_to_tree(text.replace('\r', '\n'), 0)
|
||
result = result_tree_to_paragraph(result_tree, [], [])
|
||
# 过滤段落内容不为空字符串的数据
|
||
result = [item for item in result if 'content' in item and len(item.get('content').strip()) > 0]
|
||
return [self.post_reset_paragraph(item) for item in result]
|
||
|
||
def post_reset_paragraph(self, paragraph: Dict):
|
||
result = self.filter_title_special_characters(paragraph)
|
||
result = self.sub_title(result)
|
||
return result
|
||
|
||
@staticmethod
|
||
def sub_title(paragraph: Dict):
|
||
if 'title' in paragraph:
|
||
title = paragraph.get('title')
|
||
if len(title) > 255:
|
||
return {**paragraph, 'title': title[0:255], 'content': title[255:len(title)] + paragraph.get('content')}
|
||
return paragraph
|
||
|
||
@staticmethod
|
||
def filter_title_special_characters(paragraph: Dict):
|
||
return {**paragraph, 'title': paragraph.get('title').replace("#", '') if 'title' in paragraph else ''}
|
||
|
||
|
||
default_split_pattern = {
|
||
'md': [re.compile('(?<=^)# .*|(?<=\\n)# .*'), re.compile('(?<!#)## (?!#).*'), re.compile("(?<!#)### (?!#).*"),
|
||
re.compile("(?<!#)#### (?!#).*"), re.compile("(?<!#)##### (?!#).*"),
|
||
re.compile("(?<!#)###### (?!#).*")],
|
||
'default': [re.compile("(?<!\n)\n\n.+")]
|
||
}
|
||
|
||
|
||
def get_split_model(filename: str, with_filter: bool = False, limit: int = 4096):
|
||
"""
|
||
根据文件名称获取分段模型
|
||
:param limit: 每段大小
|
||
:param with_filter: 是否过滤特殊字符
|
||
:param filename: 文件名称
|
||
:return: 分段模型
|
||
"""
|
||
if filename.endswith(".md"):
|
||
pattern_list = default_split_pattern.get('md')
|
||
return SplitModel(pattern_list, with_filter=with_filter, limit=limit)
|
||
|
||
pattern_list = default_split_pattern.get('default')
|
||
return SplitModel(pattern_list, with_filter=with_filter, limit=limit)
|
||
|
||
|
||
def to_title_tree_string(result_tree: List):
|
||
f = flat(result_tree, [], [])
|
||
return "\n│".join(list(map(lambda r: title_tostring(r), list(filter(lambda row: row.get('state') == 'title', f)))))
|
||
|
||
|
||
def title_tostring(title_obj):
|
||
f = "│ ".join(list(map(lambda index: " ", range(0, len(title_obj.get("parent_chain"))))))
|
||
return f + "├───" + title_obj.get('content')
|