MaxKB/apps/knowledge/serializers/document.py

275 lines
13 KiB
Python

import os
from functools import reduce
from typing import Dict, List
import uuid_utils.compat as uuid
from celery_once import AlreadyQueued
from django.db import transaction
from django.db.models import QuerySet, Model
from django.db.models.functions import Substr, Reverse
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from common.db.search import native_search
from common.event import ListenerManagement
from common.exception.app_exception import AppApiException
from common.handle.impl.text.csv_split_handle import CsvSplitHandle
from common.handle.impl.text.doc_split_handle import DocSplitHandle
from common.handle.impl.text.html_split_handle import HTMLSplitHandle
from common.handle.impl.text.pdf_split_handle import PdfSplitHandle
from common.handle.impl.text.text_split_handle import TextSplitHandle
from common.handle.impl.text.xls_split_handle import XlsSplitHandle
from common.handle.impl.text.xlsx_split_handle import XlsxSplitHandle
from common.handle.impl.text.zip_split_handle import ZipSplitHandle
from common.utils.common import post, get_file_content
from knowledge.models import Knowledge, Paragraph, Problem, Document, KnowledgeType, ProblemParagraphMapping, State, \
TaskType, File
from knowledge.serializers.common import ProblemParagraphManage
from knowledge.serializers.paragraph import ParagraphSerializers, ParagraphInstanceSerializer
from knowledge.task import embedding_by_document
from maxkb.const import PROJECT_DIR
default_split_handle = TextSplitHandle()
split_handles = [
HTMLSplitHandle(),
DocSplitHandle(),
PdfSplitHandle(),
XlsxSplitHandle(),
XlsSplitHandle(),
CsvSplitHandle(),
ZipSplitHandle(),
default_split_handle
]
class DocumentInstanceSerializer(serializers.Serializer):
name = serializers.CharField(required=True, label=_('document name'), max_length=128, min_length=1)
paragraphs = ParagraphInstanceSerializer(required=False, many=True, allow_null=True)
class DocumentCreateRequest(serializers.Serializer):
name = serializers.CharField(required=True, label=_('knowledge name'), max_length=64, min_length=1)
desc = serializers.CharField(required=True, label=_('knowledge description'), max_length=256, min_length=1)
embedding_model_id = serializers.UUIDField(required=True, label=_('embedding model'))
documents = DocumentInstanceSerializer(required=False, many=True)
class DocumentSplitRequest(serializers.Serializer):
file = serializers.ListField(required=True, label=_('file list'))
limit = serializers.IntegerField(required=False, label=_('limit'))
patterns = serializers.ListField(
required=False,
child=serializers.CharField(required=True, label=_('patterns')),
label=_('patterns')
)
with_filter = serializers.BooleanField(required=False, label=_('Auto Clean'))
class DocumentSerializers(serializers.Serializer):
class Operate(serializers.Serializer):
document_id = serializers.UUIDField(required=True, label=_('document id'))
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
document_id = self.data.get('document_id')
if not QuerySet(Document).filter(id=document_id).exists():
raise AppApiException(500, _('document id not exist'))
def one(self, with_valid=False):
if with_valid:
self.is_valid(raise_exception=True)
query_set = QuerySet(model=Document)
query_set = query_set.filter(**{'id': self.data.get("document_id")})
return native_search({
'document_custom_sql': query_set,
'order_by_query': QuerySet(Document).order_by('-create_time', 'id')
}, select_string=get_file_content(
os.path.join(PROJECT_DIR, "apps", "knowledge", 'sql', 'list_document.sql')), with_search_one=True)
def refresh(self, state_list=None, with_valid=True):
if state_list is None:
state_list = [State.PENDING.value, State.STARTED.value, State.SUCCESS.value, State.FAILURE.value,
State.REVOKE.value,
State.REVOKED.value, State.IGNORED.value]
if with_valid:
self.is_valid(raise_exception=True)
knowledge = QuerySet(Knowledge).filter(id=self.data.get('knowledge_id')).first()
embedding_model_id = knowledge.embedding_model_id
knowledge_user_id = knowledge.user_id
embedding_model = QuerySet(Model).filter(id=embedding_model_id).first()
if embedding_model is None:
raise AppApiException(500, _('Model does not exist'))
if embedding_model.permission_type == 'PRIVATE' and knowledge_user_id != embedding_model.user_id:
raise AppApiException(500, _('No permission to use this model') + f"{embedding_model.name}")
document_id = self.data.get("document_id")
ListenerManagement.update_status(
QuerySet(Document).filter(id=document_id), TaskType.EMBEDDING, State.PENDING
)
ListenerManagement.update_status(
QuerySet(Paragraph).annotate(
reversed_status=Reverse('status'),
task_type_status=Substr('reversed_status', TaskType.EMBEDDING.value, 1),
).filter(task_type_status__in=state_list, document_id=document_id).values('id'),
TaskType.EMBEDDING,
State.PENDING
)
ListenerManagement.get_aggregation_document_status(document_id)()
try:
embedding_by_document.delay(document_id, embedding_model_id, state_list)
except AlreadyQueued as e:
raise AppApiException(500, _('The task is being executed, please do not send it repeatedly.'))
class Create(serializers.Serializer):
knowledge_id = serializers.UUIDField(required=True, label=_('document id'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if not QuerySet(Knowledge).filter(id=self.data.get('knowledge_id')).exists():
raise AppApiException(10000, _('knowledge id not exist'))
return True
@staticmethod
def post_embedding(result, document_id, knowledge_id):
DocumentSerializers.Operate(
data={'knowledge_id': knowledge_id, 'document_id': document_id}).refresh()
return result
@post(post_function=post_embedding)
@transaction.atomic
def save(self, instance: Dict, with_valid=False, **kwargs):
if with_valid:
DocumentCreateRequest(data=instance).is_valid(raise_exception=True)
self.is_valid(raise_exception=True)
knowledge_id = self.data.get('knowledge_id')
document_paragraph_model = self.get_document_paragraph_model(knowledge_id, instance)
document_model = document_paragraph_model.get('document')
paragraph_model_list = document_paragraph_model.get('paragraph_model_list')
problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list')
problem_model_list, problem_paragraph_mapping_list = (
ProblemParagraphManage(problem_paragraph_object_list, knowledge_id).to_problem_model_list())
# 插入文档
document_model.save()
# 批量插入段落
QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None
# 批量插入问题
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
# 批量插入关联问题
QuerySet(ProblemParagraphMapping).bulk_create(
problem_paragraph_mapping_list
) if len(problem_paragraph_mapping_list) > 0 else None
document_id = str(document_model.id)
return (DocumentSerializers.Operate(
data={'knowledge_id': knowledge_id, 'document_id': document_id}
).one(with_valid=True), document_id, knowledge_id)
@staticmethod
def get_paragraph_model(document_model, paragraph_list: List):
knowledge_id = document_model.knowledge_id
paragraph_model_dict_list = [
ParagraphSerializers.Create(
data={
'knowledge_id': knowledge_id, 'document_id': str(document_model.id)
}).get_paragraph_problem_model(knowledge_id, document_model.id, paragraph)
for paragraph in paragraph_list]
paragraph_model_list = []
problem_paragraph_object_list = []
for paragraphs in paragraph_model_dict_list:
paragraph = paragraphs.get('paragraph')
for problem_model in paragraphs.get('problem_paragraph_object_list'):
problem_paragraph_object_list.append(problem_model)
paragraph_model_list.append(paragraph)
return {
'document': document_model,
'paragraph_model_list': paragraph_model_list,
'problem_paragraph_object_list': problem_paragraph_object_list
}
@staticmethod
def get_document_paragraph_model(knowledge_id, instance: Dict):
document_model = Document(
**{
'knowledge_id': knowledge_id,
'id': uuid.uuid7(),
'name': instance.get('name'),
'char_length': reduce(
lambda x, y: x + y,
[len(p.get('content')) for p in instance.get('paragraphs', [])],
0),
'meta': instance.get('meta') if instance.get('meta') is not None else {},
'type': instance.get('type') if instance.get('type') is not None else KnowledgeType.BASE
})
return DocumentSerializers.Create.get_paragraph_model(
document_model,
instance.get('paragraphs') if 'paragraphs' in instance else []
)
class Split(serializers.Serializer):
workspace_id = serializers.CharField(required=True, label=_('workspace id'))
knowledge_id = serializers.UUIDField(required=True, label=_('knowledge id'))
def is_valid(self, *, raise_exception=True):
super().is_valid(raise_exception=True)
files = self.data.get('file')
for f in files:
if f.size > 1024 * 1024 * 100:
raise AppApiException(500, _(
'The maximum size of the uploaded file cannot exceed {}MB'
).format(100))
def parse(self, instance):
self.is_valid(raise_exception=True)
DocumentSplitRequest(instance).is_valid(raise_exception=True)
file_list = instance.get("file")
return reduce(
lambda x, y: [*x, *y],
[self.file_to_paragraph(
f,
instance.get("patterns", None),
instance.get("with_filter", None),
instance.get("limit", 4096)
) for f in file_list],
[]
)
def save_image(self, image_list):
if image_list is not None and len(image_list) > 0:
exist_image_list = [str(i.get('id')) for i in
QuerySet(File).filter(id__in=[i.id for i in image_list]).values('id')]
save_image_list = [image for image in image_list if not exist_image_list.__contains__(str(image.id))]
save_image_list = list({img.id: img for img in save_image_list}.values())
# save image
for file in save_image_list:
file_bytes = file.meta.pop('content')
file.workspace_id = self.data.get('workspace_id')
file.meta['knowledge_id'] = self.data.get('knowledge_id')
file.save(file_bytes)
def file_to_paragraph(self, file, pattern_list: List, with_filter: bool, limit: int):
get_buffer = FileBufferHandle().get_buffer
for split_handle in split_handles:
if split_handle.support(file, get_buffer):
result = split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, self.save_image)
if isinstance(result, list):
return result
return [result]
result = default_split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, self.save_image)
if isinstance(result, list):
return result
return [result]
class FileBufferHandle:
buffer = None
def get_buffer(self, file):
if self.buffer is None:
self.buffer = file.read()
return self.buffer