MaxKB/apps/application/flow/common.py
shaohuzhang1 bfae088df6
Some checks are pending
sync2gitee / repo-sync (push) Waiting to run
Typos Check / Spell Check with Typos (push) Waiting to run
feat: knowledge workflow (#4399)
* feat: init knowledge workflow

* feat: add knowledge workflow and version models, serializers, and API views

* feat: knowledge workflow

* feat: knowledge workflow

* feat: add KnowledgeWorkflowModelSerializer and Operate class for workflow management

* fix: route

* feat: knowledge workflow

* feat: Knowledge workflow permission

* feat: knowledge workflow

* feat: knowledge workflow

* feat: knowledge workflow

* feat: knowledge workflow

* feat: Data source web node

* fix: Back route

* feat: knowledge workflow

* feat: knowledge workflow

* feat: Knowledge write node

* feat: add Data Source tool functionality and localization

* feat: add Data Source tool functionality and localization

* feat: knowledge workflow

* feat: knowledge workflow

* fix: simplify export tool permission check in ToolListContainer.vue

* fix: simplify export condition in ToolResourceIndex.vue

* fix: simplify condition for copying tool in ToolListContainer

* feat: knowledge workflow

* fix: Upload local files and add output fields

* feat: Knowledge write

* feat: add Document Split Node functionality and localization

* feat: add Document Split Node functionality and localization

* feat: Knowledge write

* feat: enhance Document Split Node with result processing and problem list generation

* fix: Allow problem be blank

* feat: enhance Document Split Node with result processing and problem list generation

* feat: tool datasource

* fix: Optimization of knowledge base workflow execution logic

* refactor: streamline image handling by updating application and knowledge ID management

* refactor: streamline image handling by updating application and knowledge ID management

* feat: extend support modes in variable aggregation node to include knowledge workflows

* feat: Chunks stored

* refactor: simplify file handling in document extraction by removing unnecessary byte conversion and enhancing file saving logic

* refactor: update file ID assignment in document extraction to use provided metadata

* feat: Workflow menu that distinguishes between applications and knowledge bases

* refactor: update file ID assignment in document extraction to use provided metadata

* fix: Add workspace ID as workflow execution parameter

* feat: add code template for Data Source tool form functionality

* refactor: remove unused sys import and improve module handling

* feat: Execution details support loading status

* refactor: update tool type handling and improve category merging logic

* feat: Alter fork depth

* fix: ensure filterList is properly initialized and updated in getList function

* refactor: simplify ToolStoreDialog by removing unused toolType logic

* perf: Optimize the style

* style: adjust div width for improved layout in Tree component

* refactor: improve polling mechanism for knowledge workflow action

* fix: Get workspace_id from workflow params

* fix: filter out 'file_bytes' from result in get_details method

* feat: add recursive filtering for file_bytes in context data

* fix: append results to paragraph_list instead of replacing it

* perf: Optimize translation files

* fix: include document name in bytes_to_uploaded_file call for better file handling

* refactor: optimize buffer retrieval in document processing

* refactor: remove redundant parameter from bytes_to_uploaded_file call

* fix: Page style optimization

* feat: add slider for setting limit in document rules form

* feat: add workflow knowledge management endpoints and related functionality

* fix: swap file size and file count limits in form inputs

* refactor: update tool_config args to use list format for improved readability

* feat: Node supports knowledge base workflow

* feat: Node supports knowledge base workflow

* fix: Basic node data cannot be obtained in the workflow

* style: Knowledge base workflow debugging page style adjustment

* fix: Loop nodes cannot be used in the knowledge base workflow

* fix: Knowledge base workflow variable assignment node

* feat: add chunk size slider to form for custom split strategy

* fix: Workflow style optimization

---------

Co-authored-by: CaptainB <bin@fit2cloud.com>
Co-authored-by: zhangzhanwei <zhanwei.zhang@fit2cloud.com>
Co-authored-by: wangdan-fit2cloud <dan.wang@fit2cloud.com>
2025-11-28 15:38:20 +08:00

278 lines
10 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
"""
@project: MaxKB
@Author
@file common.py
@date2024/12/11 17:57
@desc:
"""
from enum import Enum
from typing import List, Dict
from django.db.models import QuerySet
from django.utils.translation import gettext as _
from rest_framework.exceptions import ErrorDetail, ValidationError
from common.exception.app_exception import AppApiException
from common.utils.common import group_by
from models_provider.models import Model
from models_provider.tools import get_model_credential
from tools.models.tool import Tool
end_nodes = ['ai-chat-node', 'reply-node', 'function-node', 'function-lib-node', 'application-node',
'image-understand-node', 'speech-to-text-node', 'text-to-speech-node', 'image-generate-node',
'variable-assign-node']
class Answer:
def __init__(self, content, view_type, runtime_node_id, chat_record_id, child_node, real_node_id,
reasoning_content):
self.view_type = view_type
self.content = content
self.reasoning_content = reasoning_content
self.runtime_node_id = runtime_node_id
self.chat_record_id = chat_record_id
self.child_node = child_node
self.real_node_id = real_node_id
def to_dict(self):
return {'view_type': self.view_type, 'content': self.content, 'runtime_node_id': self.runtime_node_id,
'chat_record_id': self.chat_record_id,
'child_node': self.child_node,
'reasoning_content': self.reasoning_content,
'real_node_id': self.real_node_id}
class NodeChunk:
def __init__(self):
self.status = 0
self.chunk_list = []
def add_chunk(self, chunk):
self.chunk_list.append(chunk)
def end(self, chunk=None):
if chunk is not None:
self.add_chunk(chunk)
self.status = 200
def is_end(self):
return self.status == 200
class Edge:
def __init__(self, _id: str, _type: str, sourceNodeId: str, targetNodeId: str, **keywords):
self.id = _id
self.type = _type
self.sourceNodeId = sourceNodeId
self.targetNodeId = targetNodeId
for keyword in keywords:
self.__setattr__(keyword, keywords.get(keyword))
class Node:
def __init__(self, _id: str, _type: str, x: int, y: int, properties: dict, **kwargs):
self.id = _id
self.type = _type
self.x = x
self.y = y
self.properties = properties
for keyword in kwargs:
self.__setattr__(keyword, kwargs.get(keyword))
class EdgeNode:
edge: Edge
node: Node
def __init__(self, edge, node):
self.edge = edge
self.node = node
class WorkflowMode(Enum):
APPLICATION = "application"
APPLICATION_LOOP = "application-loop"
KNOWLEDGE = "knowledge"
KNOWLEDGE_LOOP = "knowledge-loop"
class Workflow:
"""
节点列表
"""
nodes: List[Node]
"""
线列表
"""
edges: List[Edge]
"""
节点id:node
"""
node_map: Dict[str, Node]
"""
节点id:当前节点id上面的所有节点
"""
up_node_map: Dict[str, List[EdgeNode]]
"""
节点id:当前节点id下面的所有节点
"""
next_node_map: Dict[str, List[EdgeNode]]
workflow_mode: WorkflowMode
def __init__(self, nodes: List[Node], edges: List[Edge],
workflow_mode: WorkflowMode = WorkflowMode.APPLICATION.value):
self.nodes = nodes
self.edges = edges
self.node_map = {node.id: node for node in nodes}
self.up_node_map = {key: [EdgeNode(edge, self.node_map.get(edge.sourceNodeId)) for
edge in edges] for
key, edges in
group_by(edges, key=lambda edge: edge.targetNodeId).items()}
self.next_node_map = {key: [EdgeNode(edge, self.node_map.get(edge.targetNodeId)) for edge in edges] for
key, edges in
group_by(edges, key=lambda edge: edge.sourceNodeId).items()}
self.workflow_mode = workflow_mode
def get_node(self, node_id):
"""
根据node_id 获取节点信息
@param node_id: node_id
@return: 节点信息
"""
return self.node_map.get(node_id)
def get_up_edge_nodes(self, node_id) -> List[EdgeNode]:
"""
根据节点id 获取当前连接前置节点和连线
@param node_id: 节点id
@return: 节点连线列表
"""
return self.up_node_map.get(node_id)
def get_next_edge_nodes(self, node_id) -> List[EdgeNode]:
"""
根据节点id 获取当前连接目标节点和连线
@param node_id: 节点id
@return: 节点连线列表
"""
return self.next_node_map.get(node_id)
def get_up_nodes(self, node_id) -> List[Node]:
"""
根据节点id 获取当前连接前置节点
@param node_id: 节点id
@return: 节点列表
"""
return [en.node for en in self.up_node_map.get(node_id)]
def get_next_nodes(self, node_id) -> List[Node]:
"""
根据节点id 获取当前连接目标节点
@param node_id: 节点id
@return: 节点列表
"""
return [en.node for en in self.next_node_map.get(node_id, [])]
@staticmethod
def new_instance(flow_obj: Dict, workflow_mode: WorkflowMode = WorkflowMode.APPLICATION):
nodes = flow_obj.get('nodes')
edges = flow_obj.get('edges')
nodes = [Node(node.get('id'), node.get('type'), **node)
for node in nodes]
edges = [Edge(edge.get('id'), edge.get('type'), **edge) for edge in edges]
return Workflow(nodes, edges, workflow_mode)
def get_start_node(self):
return self.get_node('start-node')
def get_search_node(self):
return [node for node in self.nodes if node.type == 'search-dataset-node']
def is_valid(self):
"""
校验工作流数据
"""
self.is_valid_model_params()
self.is_valid_start_node()
self.is_valid_base_node()
self.is_valid_work_flow()
def is_valid_node_params(self, node: Node):
from application.flow.step_node import get_node
get_node(node.type, self.workflow_mode)(node, None, None)
def is_valid_node(self, node: Node):
self.is_valid_node_params(node)
if node.type == 'condition-node':
branch_list = node.properties.get('node_data').get('branch')
for branch in branch_list:
source_anchor_id = f"{node.id}_{branch.get('id')}_right"
edge_list = [edge for edge in self.edges if edge.sourceAnchorId == source_anchor_id]
if len(edge_list) == 0:
raise AppApiException(500,
_('The branch {branch} of the {node} node needs to be connected').format(
node=node.properties.get("stepName"), branch=branch.get("type")))
else:
edge_list = [edge for edge in self.edges if edge.sourceNodeId == node.id]
if len(edge_list) == 0 and not end_nodes.__contains__(node.type):
raise AppApiException(500, _("{node} Nodes cannot be considered as end nodes").format(
node=node.properties.get("stepName")))
def is_valid_work_flow(self, up_node=None):
if up_node is None:
up_node = self.get_start_node()
self.is_valid_node(up_node)
next_nodes = self.get_next_nodes(up_node)
for next_node in next_nodes:
self.is_valid_work_flow(next_node)
def is_valid_start_node(self):
start_node_list = [node for node in self.nodes if node.id == 'start-node']
if len(start_node_list) == 0:
raise AppApiException(500, _('The starting node is required'))
if len(start_node_list) > 1:
raise AppApiException(500, _('There can only be one starting node'))
def is_valid_model_params(self):
node_list = [node for node in self.nodes if (node.type == 'ai-chat-node' or node.type == 'question-node')]
for node in node_list:
model = QuerySet(Model).filter(id=node.properties.get('node_data', {}).get('model_id')).first()
if model is None:
raise ValidationError(ErrorDetail(
_('The node {node} model does not exist').format(node=node.properties.get("stepName"))))
credential = get_model_credential(model.provider, model.model_type, model.model_name)
model_params_setting = node.properties.get('node_data', {}).get('model_params_setting')
model_params_setting_form = credential.get_model_params_setting_form(
model.model_name)
if model_params_setting is None:
model_params_setting = model_params_setting_form.get_default_form_data()
node.properties.get('node_data', {})['model_params_setting'] = model_params_setting
if node.properties.get('status', 200) != 200:
raise ValidationError(
ErrorDetail(_("Node {node} is unavailable").format(node.properties.get("stepName"))))
node_list = [node for node in self.nodes if (node.type == 'function-lib-node')]
for node in node_list:
function_lib_id = node.properties.get('node_data', {}).get('function_lib_id')
if function_lib_id is None:
raise ValidationError(ErrorDetail(
_('The library ID of node {node} cannot be empty').format(node=node.properties.get("stepName"))))
f_lib = QuerySet(Tool).filter(id=function_lib_id).first()
if f_lib is None:
raise ValidationError(ErrorDetail(_("The function library for node {node} is not available").format(
node=node.properties.get("stepName"))))
def is_valid_base_node(self):
base_node_list = [node for node in self.nodes if node.id == 'base-node']
if len(base_node_list) == 0:
raise AppApiException(500, _('Basic information node is required'))
if len(base_node_list) > 1:
raise AppApiException(500, _('There can only be one basic information node'))