MaxKB/apps/dataset/serializers/paragraph_serializers.py
2025-02-26 11:52:44 +08:00

769 lines
42 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
"""
@project: maxkb
@Author
@file paragraph_serializers.py
@date2023/10/16 15:51
@desc:
"""
import uuid
from typing import Dict
from celery_once import AlreadyQueued
from django.db import transaction
from django.db.models import QuerySet, Count
from drf_yasg import openapi
from rest_framework import serializers
from common.db.search import page_search
from common.event import ListenerManagement
from common.exception.app_exception import AppApiException
from common.mixins.api_mixin import ApiMixin
from common.util.common import post
from common.util.field_message import ErrMessage
from dataset.models import Paragraph, Problem, Document, ProblemParagraphMapping, DataSet, TaskType, State
from dataset.serializers.common_serializers import update_document_char_length, BatchSerializer, ProblemParagraphObject, \
ProblemParagraphManage, get_embedding_model_id_by_dataset_id
from dataset.serializers.problem_serializers import ProblemInstanceSerializer, ProblemSerializer, ProblemSerializers
from embedding.models import SourceType
from embedding.task.embedding import embedding_by_problem as embedding_by_problem_task, embedding_by_problem, \
delete_embedding_by_source, enable_embedding_by_paragraph, disable_embedding_by_paragraph, embedding_by_paragraph, \
delete_embedding_by_paragraph, delete_embedding_by_paragraph_ids, update_embedding_document_id
from dataset.task import generate_related_by_paragraph_id_list
from django.utils.translation import gettext_lazy as _
class ParagraphSerializer(serializers.ModelSerializer):
class Meta:
model = Paragraph
fields = ['id', 'content', 'is_active', 'document_id', 'title',
'create_time', 'update_time']
class ParagraphInstanceSerializer(ApiMixin, serializers.Serializer):
"""
段落实例对象
"""
content = serializers.CharField(required=True, error_messages=ErrMessage.char(_('content')),
max_length=102400,
min_length=1,
allow_null=True, allow_blank=True)
title = serializers.CharField(required=False, max_length=256, error_messages=ErrMessage.char(_('section title')),
allow_null=True, allow_blank=True)
problem_list = ProblemInstanceSerializer(required=False, many=True)
is_active = serializers.BooleanField(required=False, error_messages=ErrMessage.char(_('Is active')))
@staticmethod
def get_request_body_api():
return openapi.Schema(
type=openapi.TYPE_OBJECT,
required=['content'],
properties={
'content': openapi.Schema(type=openapi.TYPE_STRING, max_length=4096, title=_('section content'),
description=_('section content')),
'title': openapi.Schema(type=openapi.TYPE_STRING, max_length=256, title=_('section title'),
description=_('section title')),
'is_active': openapi.Schema(type=openapi.TYPE_BOOLEAN, title=_('Is active'), description=_('Is active')),
'problem_list': openapi.Schema(type=openapi.TYPE_ARRAY, title=_('problem list'),
description=_('problem list'),
items=ProblemInstanceSerializer.get_request_body_api())
}
)
class EditParagraphSerializers(serializers.Serializer):
title = serializers.CharField(required=False, max_length=256, error_messages=ErrMessage.char(
_('section title')), allow_null=True, allow_blank=True)
content = serializers.CharField(required=False, max_length=102400, allow_null=True, allow_blank=True,
error_messages=ErrMessage.char(
_('section title')))
problem_list = ProblemInstanceSerializer(required=False, many=True)
class ParagraphSerializers(ApiMixin, serializers.Serializer):
title = serializers.CharField(required=False, max_length=256, error_messages=ErrMessage.char(
_('section title')), allow_null=True, allow_blank=True)
content = serializers.CharField(required=True, max_length=102400, error_messages=ErrMessage.char(
_('section title')))
class Problem(ApiMixin, serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('dataset id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('document id')))
paragraph_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('paragraph id')))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if not QuerySet(Paragraph).filter(id=self.data.get('paragraph_id')).exists():
raise AppApiException(500, _('Paragraph id does not exist'))
def list(self, with_valid=False):
"""
获取问题列表
:param with_valid: 是否校验
:return: 问题列表
"""
if with_valid:
self.is_valid(raise_exception=True)
problem_paragraph_mapping = QuerySet(ProblemParagraphMapping).filter(dataset_id=self.data.get("dataset_id"),
paragraph_id=self.data.get(
'paragraph_id'))
return [ProblemSerializer(row).data for row in
QuerySet(Problem).filter(id__in=[row.problem_id for row in problem_paragraph_mapping])]
@transaction.atomic
def save(self, instance: Dict, with_valid=True, with_embedding=True, embedding_by_problem=None):
if with_valid:
self.is_valid()
ProblemInstanceSerializer(data=instance).is_valid(raise_exception=True)
problem = QuerySet(Problem).filter(dataset_id=self.data.get('dataset_id'),
content=instance.get('content')).first()
if problem is None:
problem = Problem(id=uuid.uuid1(), dataset_id=self.data.get('dataset_id'),
content=instance.get('content'))
problem.save()
if QuerySet(ProblemParagraphMapping).filter(dataset_id=self.data.get('dataset_id'), problem_id=problem.id,
paragraph_id=self.data.get('paragraph_id')).exists():
raise AppApiException(500, _('Already associated, please do not associate again'))
problem_paragraph_mapping = ProblemParagraphMapping(id=uuid.uuid1(),
problem_id=problem.id,
document_id=self.data.get('document_id'),
paragraph_id=self.data.get('paragraph_id'),
dataset_id=self.data.get('dataset_id'))
problem_paragraph_mapping.save()
model_id = get_embedding_model_id_by_dataset_id(self.data.get('dataset_id'))
if with_embedding:
embedding_by_problem_task({'text': problem.content,
'is_active': True,
'source_type': SourceType.PROBLEM,
'source_id': problem_paragraph_mapping.id,
'document_id': self.data.get('document_id'),
'paragraph_id': self.data.get('paragraph_id'),
'dataset_id': self.data.get('dataset_id'),
}, model_id)
return ProblemSerializers.Operate(
data={'dataset_id': self.data.get('dataset_id'),
'problem_id': problem.id}).one(with_valid=True)
@staticmethod
def get_request_params_api():
return [openapi.Parameter(name='dataset_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('dataset id')),
openapi.Parameter(name='document_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('document id')),
openapi.Parameter(name='paragraph_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('paragraph id'))]
@staticmethod
def get_request_body_api():
return openapi.Schema(type=openapi.TYPE_OBJECT,
required=["content"],
properties={
'content': openapi.Schema(
type=openapi.TYPE_STRING, title=_('content'),)
})
@staticmethod
def get_response_body_api():
return openapi.Schema(
type=openapi.TYPE_OBJECT,
required=['id', 'content', 'hit_num', 'dataset_id', 'create_time', 'update_time'],
properties={
'id': openapi.Schema(type=openapi.TYPE_STRING, title="id",
description="id", default="xx"),
'content': openapi.Schema(type=openapi.TYPE_STRING, title=_('question content'),
description=_('question content'), default=_('question content')),
'hit_num': openapi.Schema(type=openapi.TYPE_INTEGER, title=_('hit num'), description=_('hit num'),
default=1),
'dataset_id': openapi.Schema(type=openapi.TYPE_STRING, title=_('dataset id'),
description=_('dataset id'), default='xxx'),
'update_time': openapi.Schema(type=openapi.TYPE_STRING, title=_('update time'),
description=_('update time'),
default="1970-01-01 00:00:00"),
'create_time': openapi.Schema(type=openapi.TYPE_STRING, title=_('create time'),
description=_('create time'),
default="1970-01-01 00:00:00"
)
}
)
class Association(ApiMixin, serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('dataset id')))
problem_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('problem id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('document id')))
paragraph_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('paragraph id')))
def is_valid(self, *, raise_exception=True):
super().is_valid(raise_exception=True)
dataset_id = self.data.get('dataset_id')
paragraph_id = self.data.get('paragraph_id')
problem_id = self.data.get("problem_id")
if not QuerySet(Paragraph).filter(dataset_id=dataset_id, id=paragraph_id).exists():
raise AppApiException(500, _('Paragraph does not exist'))
if not QuerySet(Problem).filter(dataset_id=dataset_id, id=problem_id).exists():
raise AppApiException(500, _('Problem does not exist'))
def association(self, with_valid=True, with_embedding=True):
if with_valid:
self.is_valid(raise_exception=True)
problem = QuerySet(Problem).filter(id=self.data.get("problem_id")).first()
problem_paragraph_mapping = ProblemParagraphMapping(id=uuid.uuid1(),
document_id=self.data.get('document_id'),
paragraph_id=self.data.get('paragraph_id'),
dataset_id=self.data.get('dataset_id'),
problem_id=problem.id)
problem_paragraph_mapping.save()
if with_embedding:
model_id = get_embedding_model_id_by_dataset_id(self.data.get('dataset_id'))
embedding_by_problem({'text': problem.content,
'is_active': True,
'source_type': SourceType.PROBLEM,
'source_id': problem_paragraph_mapping.id,
'document_id': self.data.get('document_id'),
'paragraph_id': self.data.get('paragraph_id'),
'dataset_id': self.data.get('dataset_id'),
}, model_id)
def un_association(self, with_valid=True):
if with_valid:
self.is_valid(raise_exception=True)
problem_paragraph_mapping = QuerySet(ProblemParagraphMapping).filter(
paragraph_id=self.data.get('paragraph_id'),
dataset_id=self.data.get('dataset_id'),
problem_id=self.data.get(
'problem_id')).first()
problem_paragraph_mapping_id = problem_paragraph_mapping.id
problem_paragraph_mapping.delete()
delete_embedding_by_source(problem_paragraph_mapping_id)
return True
@staticmethod
def get_request_params_api():
return [openapi.Parameter(name='dataset_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('dataset id')),
openapi.Parameter(name='document_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('document id'))
, openapi.Parameter(name='paragraph_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('paragraph id')),
openapi.Parameter(name='problem_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('problem id'))
]
class Batch(serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('dataset id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('document id')))
@transaction.atomic
def batch_delete(self, instance: Dict, with_valid=True):
if with_valid:
BatchSerializer(data=instance).is_valid(model=Paragraph, raise_exception=True)
self.is_valid(raise_exception=True)
paragraph_id_list = instance.get("id_list")
QuerySet(Paragraph).filter(id__in=paragraph_id_list).delete()
delete_problems_and_mappings(paragraph_id_list)
update_document_char_length(self.data.get('document_id'))
# 删除向量库
delete_embedding_by_paragraph_ids(paragraph_id_list)
return True
class Migrate(ApiMixin, serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('dataset id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('document id')))
target_dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('target dataset id')))
target_document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('target document id')))
paragraph_id_list = serializers.ListField(required=True, error_messages=ErrMessage.char(_('paragraph id list')),
child=serializers.UUIDField(required=True,
error_messages=ErrMessage.uuid(_('paragraph id'))))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
document_list = QuerySet(Document).filter(
id__in=[self.data.get('document_id'), self.data.get('target_document_id')])
document_id = self.data.get('document_id')
target_document_id = self.data.get('target_document_id')
if document_id == target_document_id:
raise AppApiException(5000, _('The document to be migrated is consistent with the target document'))
if len([document for document in document_list if str(document.id) == self.data.get('document_id')]) < 1:
raise AppApiException(5000, _('The document id does not exist [{document_id}]').format(
document_id=self.data.get('document_id')))
if len([document for document in document_list if
str(document.id) == self.data.get('target_document_id')]) < 1:
raise AppApiException(5000, _('The target document id does not exist [{document_id}]').format(
document_id=self.data.get('target_document_id')))
@transaction.atomic
def migrate(self, with_valid=True):
if with_valid:
self.is_valid(raise_exception=True)
dataset_id = self.data.get('dataset_id')
target_dataset_id = self.data.get('target_dataset_id')
document_id = self.data.get('document_id')
target_document_id = self.data.get('target_document_id')
paragraph_id_list = self.data.get('paragraph_id_list')
paragraph_list = QuerySet(Paragraph).filter(dataset_id=dataset_id, document_id=document_id,
id__in=paragraph_id_list)
problem_paragraph_mapping_list = QuerySet(ProblemParagraphMapping).filter(paragraph__in=paragraph_list)
# 同数据集迁移
if target_dataset_id == dataset_id:
if len(problem_paragraph_mapping_list):
problem_paragraph_mapping_list = [
self.update_problem_paragraph_mapping(target_document_id,
problem_paragraph_mapping) for problem_paragraph_mapping
in
problem_paragraph_mapping_list]
# 修改mapping
QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list,
['document_id'])
update_embedding_document_id([paragraph.id for paragraph in paragraph_list],
target_document_id, target_dataset_id, None)
# 修改段落信息
paragraph_list.update(document_id=target_document_id)
# 不同数据集迁移
else:
problem_list = QuerySet(Problem).filter(
id__in=[problem_paragraph_mapping.problem_id for problem_paragraph_mapping in
problem_paragraph_mapping_list])
# 目标数据集问题
target_problem_list = list(
QuerySet(Problem).filter(content__in=[problem.content for problem in problem_list],
dataset_id=target_dataset_id))
target_handle_problem_list = [
self.get_target_dataset_problem(target_dataset_id, target_document_id, problem_paragraph_mapping,
problem_list, target_problem_list) for
problem_paragraph_mapping
in
problem_paragraph_mapping_list]
create_problem_list = [problem for problem, is_create in target_handle_problem_list if
is_create is not None and is_create]
# 插入问题
QuerySet(Problem).bulk_create(create_problem_list)
# 修改mapping
QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list,
['problem_id', 'dataset_id', 'document_id'])
target_dataset = QuerySet(DataSet).filter(id=target_dataset_id).first()
dataset = QuerySet(DataSet).filter(id=dataset_id).first()
embedding_model_id = None
if target_dataset.embedding_mode_id != dataset.embedding_mode_id:
embedding_model_id = str(target_dataset.embedding_mode_id)
pid_list = [paragraph.id for paragraph in paragraph_list]
# 修改段落信息
paragraph_list.update(dataset_id=target_dataset_id, document_id=target_document_id)
# 修改向量段落信息
update_embedding_document_id(pid_list, target_document_id, target_dataset_id, embedding_model_id)
update_document_char_length(document_id)
update_document_char_length(target_document_id)
@staticmethod
def update_problem_paragraph_mapping(target_document_id: str, problem_paragraph_mapping):
problem_paragraph_mapping.document_id = target_document_id
return problem_paragraph_mapping
@staticmethod
def get_target_dataset_problem(target_dataset_id: str,
target_document_id: str,
problem_paragraph_mapping,
source_problem_list,
target_problem_list):
source_problem_list = [source_problem for source_problem in source_problem_list if
source_problem.id == problem_paragraph_mapping.problem_id]
problem_paragraph_mapping.dataset_id = target_dataset_id
problem_paragraph_mapping.document_id = target_document_id
if len(source_problem_list) > 0:
problem_content = source_problem_list[-1].content
problem_list = [problem for problem in target_problem_list if problem.content == problem_content]
if len(problem_list) > 0:
problem = problem_list[-1]
problem_paragraph_mapping.problem_id = problem.id
return problem, False
else:
problem = Problem(id=uuid.uuid1(), dataset_id=target_dataset_id, content=problem_content)
target_problem_list.append(problem)
problem_paragraph_mapping.problem_id = problem.id
return problem, True
return None
@staticmethod
def get_request_params_api():
return [openapi.Parameter(name='dataset_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('document id')),
openapi.Parameter(name='document_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('document id')),
openapi.Parameter(name='target_dataset_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('target dataset id')),
openapi.Parameter(name='target_document_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('target document id')),
]
@staticmethod
def get_request_body_api():
return openapi.Schema(
type=openapi.TYPE_ARRAY,
items=openapi.Schema(type=openapi.TYPE_STRING),
title=_('paragraph id list'),
description=_('paragraph id list')
)
class Operate(ApiMixin, serializers.Serializer):
# 段落id
paragraph_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('paragraph id')))
# 知识库id
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('dataset id')))
# 文档id
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('document id')))
def is_valid(self, *, raise_exception=True):
super().is_valid(raise_exception=True)
if not QuerySet(Paragraph).filter(id=self.data.get('paragraph_id')).exists():
raise AppApiException(500, _('Paragraph id does not exist'))
@staticmethod
def post_embedding(paragraph, instance, dataset_id):
if 'is_active' in instance and instance.get('is_active') is not None:
(enable_embedding_by_paragraph if instance.get(
'is_active') else disable_embedding_by_paragraph)(paragraph.get('id'))
else:
model_id = get_embedding_model_id_by_dataset_id(dataset_id)
embedding_by_paragraph(paragraph.get('id'), model_id)
return paragraph
@post(post_embedding)
@transaction.atomic
def edit(self, instance: Dict):
self.is_valid()
EditParagraphSerializers(data=instance).is_valid(raise_exception=True)
_paragraph = QuerySet(Paragraph).get(id=self.data.get("paragraph_id"))
update_keys = ['title', 'content', 'is_active']
for update_key in update_keys:
if update_key in instance and instance.get(update_key) is not None:
_paragraph.__setattr__(update_key, instance.get(update_key))
if 'problem_list' in instance:
update_problem_list = list(
filter(lambda row: 'id' in row and row.get('id') is not None, instance.get('problem_list')))
create_problem_list = list(filter(lambda row: row.get('id') is None, instance.get('problem_list')))
# 问题集合
problem_list = QuerySet(Problem).filter(paragraph_id=self.data.get("paragraph_id"))
# 校验前端 携带过来的id
for update_problem in update_problem_list:
if not set([str(row.id) for row in problem_list]).__contains__(update_problem.get('id')):
raise AppApiException(500, _('Problem id does not exist'))
# 对比需要删除的问题
delete_problem_list = list(filter(
lambda row: not [str(update_row.get('id')) for update_row in update_problem_list].__contains__(
str(row.id)), problem_list)) if len(update_problem_list) > 0 else []
# 删除问题
QuerySet(Problem).filter(id__in=[row.id for row in delete_problem_list]).delete() if len(
delete_problem_list) > 0 else None
# 插入新的问题
QuerySet(Problem).bulk_create(
[Problem(id=uuid.uuid1(), content=p.get('content'), paragraph_id=self.data.get('paragraph_id'),
dataset_id=self.data.get('dataset_id'), document_id=self.data.get('document_id')) for
p in create_problem_list]) if len(create_problem_list) else None
# 修改问题集合
QuerySet(Problem).bulk_update(
[Problem(id=row.get('id'), content=row.get('content')) for row in update_problem_list],
['content']) if len(
update_problem_list) > 0 else None
_paragraph.save()
update_document_char_length(self.data.get('document_id'))
return self.one(), instance, self.data.get('dataset_id')
def get_problem_list(self):
ProblemParagraphMapping(ProblemParagraphMapping)
problem_paragraph_mapping = QuerySet(ProblemParagraphMapping).filter(
paragraph_id=self.data.get("paragraph_id"))
if len(problem_paragraph_mapping) > 0:
return [ProblemSerializer(problem).data for problem in
QuerySet(Problem).filter(id__in=[ppm.problem_id for ppm in problem_paragraph_mapping])]
return []
def one(self, with_valid=False):
if with_valid:
self.is_valid(raise_exception=True)
return {**ParagraphSerializer(QuerySet(model=Paragraph).get(id=self.data.get('paragraph_id'))).data,
'problem_list': self.get_problem_list()}
def delete(self, with_valid=False):
if with_valid:
self.is_valid(raise_exception=True)
paragraph_id = self.data.get('paragraph_id')
Paragraph.objects.filter(id=paragraph_id).delete()
delete_problems_and_mappings([paragraph_id])
update_document_char_length(self.data.get('document_id'))
delete_embedding_by_paragraph(paragraph_id)
@staticmethod
def get_request_body_api():
return ParagraphInstanceSerializer.get_request_body_api()
@staticmethod
def get_response_body_api():
return ParagraphInstanceSerializer.get_request_body_api()
@staticmethod
def get_request_params_api():
return [openapi.Parameter(type=openapi.TYPE_STRING, in_=openapi.IN_PATH, name='paragraph_id',
description=_('paragraph id'))]
class Create(ApiMixin, serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('dataset id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('document id')))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if not QuerySet(Document).filter(id=self.data.get('document_id'),
dataset_id=self.data.get('dataset_id')).exists():
raise AppApiException(500, _('The document id is incorrect'))
def save(self, instance: Dict, with_valid=True, with_embedding=True):
if with_valid:
ParagraphSerializers(data=instance).is_valid(raise_exception=True)
self.is_valid()
dataset_id = self.data.get("dataset_id")
document_id = self.data.get('document_id')
paragraph_problem_model = self.get_paragraph_problem_model(dataset_id, document_id, instance)
paragraph = paragraph_problem_model.get('paragraph')
problem_paragraph_object_list = paragraph_problem_model.get('problem_paragraph_object_list')
problem_model_list, problem_paragraph_mapping_list = (ProblemParagraphManage(problem_paragraph_object_list,
dataset_id).
to_problem_model_list())
# 插入段落
paragraph_problem_model.get('paragraph').save()
# 插入問題
QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None
# 插入问题关联关系
QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len(
problem_paragraph_mapping_list) > 0 else None
# 修改长度
update_document_char_length(document_id)
if with_embedding:
model_id = get_embedding_model_id_by_dataset_id(dataset_id)
embedding_by_paragraph(str(paragraph.id), model_id)
return ParagraphSerializers.Operate(
data={'paragraph_id': str(paragraph.id), 'dataset_id': dataset_id, 'document_id': document_id}).one(
with_valid=True)
@staticmethod
def get_paragraph_problem_model(dataset_id: str, document_id: str, instance: Dict):
paragraph = Paragraph(id=uuid.uuid1(),
document_id=document_id,
content=instance.get("content"),
dataset_id=dataset_id,
title=instance.get("title") if 'title' in instance else '')
problem_paragraph_object_list = [
ProblemParagraphObject(dataset_id, document_id, paragraph.id, problem.get('content')) for problem in
(instance.get('problem_list') if 'problem_list' in instance else [])]
return {'paragraph': paragraph,
'problem_paragraph_object_list': problem_paragraph_object_list}
@staticmethod
def or_get(exists_problem_list, content, dataset_id):
exists = [row for row in exists_problem_list if row.content == content]
if len(exists) > 0:
return exists[0]
else:
return Problem(id=uuid.uuid1(), content=content, dataset_id=dataset_id)
@staticmethod
def get_request_body_api():
return ParagraphInstanceSerializer.get_request_body_api()
@staticmethod
def get_request_params_api():
return [openapi.Parameter(name='dataset_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('dataset id')),
openapi.Parameter(name='document_id', in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('document id'))
]
class Query(ApiMixin, serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('dataset id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char(
_('document id')))
title = serializers.CharField(required=False, error_messages=ErrMessage.char(
_('section title')))
content = serializers.CharField(required=False)
def get_query_set(self):
query_set = QuerySet(model=Paragraph)
query_set = query_set.filter(
**{'dataset_id': self.data.get('dataset_id'), 'document_id': self.data.get("document_id")})
if 'title' in self.data:
query_set = query_set.filter(
**{'title__icontains': self.data.get('title')})
if 'content' in self.data:
query_set = query_set.filter(**{'content__icontains': self.data.get('content')})
query_set.order_by('-create_time', 'id')
return query_set
def list(self):
return list(map(lambda row: ParagraphSerializer(row).data, self.get_query_set()))
def page(self, current_page, page_size):
query_set = self.get_query_set()
return page_search(current_page, page_size, query_set, lambda row: ParagraphSerializer(row).data)
@staticmethod
def get_request_params_api():
return [openapi.Parameter(name='document_id',
in_=openapi.IN_PATH,
type=openapi.TYPE_STRING,
required=True,
description=_('document id')),
openapi.Parameter(name='title',
in_=openapi.IN_QUERY,
type=openapi.TYPE_STRING,
required=False,
description=_('title')),
openapi.Parameter(name='content',
in_=openapi.IN_QUERY,
type=openapi.TYPE_STRING,
required=False,
description=_('content'))
]
@staticmethod
def get_response_body_api():
return openapi.Schema(
type=openapi.TYPE_OBJECT,
required=['id', 'content', 'hit_num', 'star_num', 'trample_num', 'is_active', 'dataset_id',
'document_id', 'title',
'create_time', 'update_time'],
properties={
'id': openapi.Schema(type=openapi.TYPE_STRING, title="id",
description="id", default="xx"),
'content': openapi.Schema(type=openapi.TYPE_STRING, title=_('content'),
description=_('content'), default=_('content')),
'title': openapi.Schema(type=openapi.TYPE_STRING, title=_('title'),
description=_('title'), default="xxx"),
'hit_num': openapi.Schema(type=openapi.TYPE_INTEGER, title=_('hit num'), description=_('hit num'),
default=1),
'star_num': openapi.Schema(type=openapi.TYPE_INTEGER, title=_('Number of likes'),
description=_('Number of likes'), default=1),
'trample_num': openapi.Schema(type=openapi.TYPE_INTEGER, title=_('Number of dislikes'),
description=_('Number of dislikes'), default=1),
'dataset_id': openapi.Schema(type=openapi.TYPE_STRING, title=_('dataset id'),
description=_('dataset id'), default='xxx'),
'document_id': openapi.Schema(type=openapi.TYPE_STRING, title=_('document id'),
description=_('document id'), default='xxx'),
'is_active': openapi.Schema(type=openapi.TYPE_BOOLEAN, title=_('Is active'),
description=_('Is active'), default=True),
'update_time': openapi.Schema(type=openapi.TYPE_STRING, title=_('update time'),
description=_('update time'),
default="1970-01-01 00:00:00"),
'create_time': openapi.Schema(type=openapi.TYPE_STRING, title=_('create time'),
description=_('create time'),
default="1970-01-01 00:00:00"
)
}
)
class BatchGenerateRelated(ApiMixin, serializers.Serializer):
dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('dataset id')))
document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('document id')))
def batch_generate_related(self, instance: Dict, with_valid=True):
if with_valid:
self.is_valid(raise_exception=True)
paragraph_id_list = instance.get("paragraph_id_list")
model_id = instance.get("model_id")
prompt = instance.get("prompt")
document_id = self.data.get('document_id')
ListenerManagement.update_status(QuerySet(Document).filter(id=document_id),
TaskType.GENERATE_PROBLEM,
State.PENDING)
ListenerManagement.update_status(QuerySet(Paragraph).filter(id__in=paragraph_id_list),
TaskType.GENERATE_PROBLEM,
State.PENDING)
ListenerManagement.get_aggregation_document_status(document_id)()
try:
generate_related_by_paragraph_id_list.delay(document_id, paragraph_id_list, model_id,
prompt)
except AlreadyQueued as e:
raise AppApiException(500, _('The task is being executed, please do not send it again.'))
def delete_problems_and_mappings(paragraph_ids):
problem_paragraph_mappings = ProblemParagraphMapping.objects.filter(paragraph_id__in=paragraph_ids)
problem_ids = set(problem_paragraph_mappings.values_list('problem_id', flat=True))
if problem_ids:
problem_paragraph_mappings.delete()
remaining_problem_counts = ProblemParagraphMapping.objects.filter(problem_id__in=problem_ids).values(
'problem_id').annotate(count=Count('problem_id'))
remaining_problem_ids = {pc['problem_id'] for pc in remaining_problem_counts}
problem_ids_to_delete = problem_ids - remaining_problem_ids
Problem.objects.filter(id__in=problem_ids_to_delete).delete()
else:
problem_paragraph_mappings.delete()