# coding=utf-8 """ @project: qabot @Author:虎 @file: split_model.py @date:2023/9/1 15:12 @desc: """ import re from typing import List import jieba def get_level_block(text, level_content_list, level_content_index): """ 从文本中获取块数据 :param text: 文本 :param level_content_list: 拆分的title数组 :param level_content_index: 指定的下标 :return: 拆分后的文本数据 """ start_content: str = level_content_list[level_content_index].get('content') next_content = level_content_list[level_content_index + 1].get("content") if level_content_index + 1 < len( level_content_list) else None start_index = text.index(start_content) end_index = text.index(next_content) if next_content is not None else len(text) return text[start_index:end_index] def to_tree_obj(content, state='title'): """ 转换为树形对象 :param content: 文本数据 :param state: 状态: title block :return: 转换后的数据 """ return {'content': content, 'state': state} def remove_special_symbol(str_source: str): """ 删除特殊字符 :param str_source: 需要删除的文本数据 :return: 删除后的数据 """ return str_source def filter_special_symbol(content: dict): """ 过滤文本中的特殊字符 :param content: 需要过滤的对象 :return: 过滤后返回 """ content['content'] = remove_special_symbol(content['content']) return content def flat(tree_data_list: List[dict], parent_chain: List[dict], result: List[dict]): """ 扁平化树形结构数据 :param tree_data_list: 树形接口数据 :param parent_chain: 父级数据 传[] 用于递归存储数据 :param result: 响应数据 传[] 用于递归存放数据 :return: result 扁平化后的数据 """ if parent_chain is None: parent_chain = [] if result is None: result = [] for tree_data in tree_data_list: p = parent_chain.copy() p.append(tree_data) result.append(to_flat_obj(parent_chain, content=tree_data["content"], state=tree_data["state"])) children = tree_data.get('children') if children is not None and len(children) > 0: flat(children, p, result) return result def to_paragraph(obj: dict): """ 转换为段落 :param obj: 需要转换的对象 :return: 段落对象 """ content = obj['content'] return {"keywords": get_keyword(content), 'parent_chain': list(map(lambda p: p['content'], obj['parent_chain'])), 'content': content} def get_keyword(content: str): """ 获取content中的关键词 :param content: 文本 :return: 关键词数组 """ stopwords = [':', '“', '!', '”', '\n', '\\s'] cutworms = jieba.lcut(content) return list(set(list(filter(lambda k: (k not in stopwords) | len(k) > 1, cutworms)))) def titles_to_paragraph(list_title: List[dict]): """ 将同一父级的title转换为块段落 :param list_title: 同父级title :return: 块段落 """ if len(list_title) > 0: content = "\n".join( list(map(lambda d: d['content'].strip("\r\n").strip("\n").strip("\\s"), list_title))) return {'keywords': '', 'parent_chain': list( map(lambda p: p['content'].strip("\r\n").strip("\n").strip("\\s"), list_title[0]['parent_chain'])), 'content': content} return None def parse_group_key(level_list: List[dict]): """ 将同级别同父级的title生成段落,加上本身的段落数据形成新的数据 :param level_list: title n 级数据 :return: 根据title生成的数据 + 段落数据 """ result = [] group_data = group_by(list(filter(lambda f: f['state'] == 'title' and len(f['parent_chain']) > 0, level_list)), key=lambda d: ",".join(list(map(lambda p: p['content'], d['parent_chain'])))) result += list(map(lambda group_data_key: titles_to_paragraph(group_data[group_data_key]), group_data)) result += list(map(to_paragraph, list(filter(lambda f: f['state'] == 'block', level_list)))) return result def to_block_paragraph(tree_data_list: List[dict]): """ 转换为块段落对象 :param tree_data_list: 树数据 :return: 块段落 """ flat_list = flat(tree_data_list, [], []) level_group_dict: dict = group_by(flat_list, key=lambda f: f['level']) return list(map(lambda level: parse_group_key(level_group_dict[level]), level_group_dict)) def parse_level(text, pattern: str): """ 获取正则匹配到的文本 :param text: 需要匹配的文本 :param pattern: 正则 :return: 符合正则的文本 """ level_content_list = list(map(to_tree_obj, re.findall(pattern, text, flags=0))) return list(map(filter_special_symbol, level_content_list)) def to_flat_obj(parent_chain: List[dict], content: str, state: str): """ 将树形属性转换为扁平对象 :param parent_chain: :param content: :param state: :return: """ return {'parent_chain': parent_chain, 'level': len(parent_chain), "content": content, 'state': state} def flat_map(array: List[List]): """ 将二位数组转为一维数组 :param array: 二维数组 :return: 一维数组 """ result = [] for e in array: result += e return result def group_by(list_source: List, key): """ 將數組分組 :param list_source: 需要分組的數組 :param key: 分組函數 :return: key->[] """ result = {} for e in list_source: k = key(e) array = result.get(k) if k in result else [] array.append(e) result[k] = array return result class SplitModel: def __init__(self, content_level_pattern): self.content_level_pattern = content_level_pattern def parse_to_tree(self, text: str, index=0): """ 解析文本 :param text: 需要解析的文本 :param index: 从那个正则开始解析 :return: 解析后的树形结果数据 """ if len(self.content_level_pattern) == index: return level_content_list = parse_level(text, pattern=self.content_level_pattern[index]) for i in range(len(level_content_list)): block = get_level_block(text, level_content_list, i) children = self.parse_to_tree(text=block.replace(level_content_list[i]['content'][:-1], ""), index=index + 1) if children is not None and len(children) > 0: level_content_list[i]['children'] = children else: if len(block) > 0: level_content_list[i]['children'] = [to_tree_obj(block, 'block')] if len(level_content_list) > 0: end_index = text.index(level_content_list[0].get('content')) if end_index == 0: return level_content_list other_content = text[0:end_index] if len(other_content.strip()) > 0: level_content_list.append(to_tree_obj(other_content, 'block')) return level_content_list def parse(self, text: str): """ 解析文本 :param text: 文本数据 :return: 解析后数据 {content:段落数据,keywords:[‘段落关键词’],parent_chain:['段落父级链路']} """ result_tree = self.parse_to_tree(text, 0) return flat_map(to_block_paragraph(result_tree))