# coding=utf-8 """ @project: maxkb @Author:虎 @file: utils.py @date:2024/6/6 15:15 @desc: """ import asyncio import json import queue import threading from typing import Iterator from django.http import StreamingHttpResponse from langchain_core.messages import BaseMessageChunk, BaseMessage, ToolMessage, AIMessageChunk from langchain_mcp_adapters.client import MultiServerMCPClient from langgraph.prebuilt import create_react_agent from application.flow.i_step_node import WorkFlowPostHandler from common.result import result from common.utils.logger import maxkb_logger class Reasoning: def __init__(self, reasoning_content_start, reasoning_content_end): self.content = "" self.reasoning_content = "" self.all_content = "" self.reasoning_content_start_tag = reasoning_content_start self.reasoning_content_end_tag = reasoning_content_end self.reasoning_content_start_tag_len = len( reasoning_content_start) if reasoning_content_start is not None else 0 self.reasoning_content_end_tag_len = len(reasoning_content_end) if reasoning_content_end is not None else 0 self.reasoning_content_end_tag_prefix = reasoning_content_end[ 0] if self.reasoning_content_end_tag_len > 0 else '' self.reasoning_content_is_start = False self.reasoning_content_is_end = False self.reasoning_content_chunk = "" def get_end_reasoning_content(self): if not self.reasoning_content_is_start and not self.reasoning_content_is_end: r = {'content': self.all_content, 'reasoning_content': ''} self.reasoning_content_chunk = "" return r if self.reasoning_content_is_start and not self.reasoning_content_is_end: r = {'content': '', 'reasoning_content': self.reasoning_content_chunk} self.reasoning_content_chunk = "" return r return {'content': '', 'reasoning_content': ''} def _normalize_content(self, content): """将不同类型的内容统一转换为字符串""" if isinstance(content, str): return content elif isinstance(content, list): # 处理包含多种内容类型的列表 normalized_parts = [] for item in content: if isinstance(item, dict): if item.get('type') == 'text': normalized_parts.append(item.get('text', '')) return ''.join(normalized_parts) else: return str(content) def get_reasoning_content(self, chunk): # 如果没有开始思考过程标签那么就全是结果 if self.reasoning_content_start_tag is None or len(self.reasoning_content_start_tag) == 0: self.content += chunk.content return {'content': chunk.content, 'reasoning_content': ''} # 如果没有结束思考过程标签那么就全部是思考过程 if self.reasoning_content_end_tag is None or len(self.reasoning_content_end_tag) == 0: return {'content': '', 'reasoning_content': chunk.content} chunk.content = self._normalize_content(chunk.content) self.all_content += chunk.content if not self.reasoning_content_is_start and len(self.all_content) >= self.reasoning_content_start_tag_len: if self.all_content.startswith(self.reasoning_content_start_tag): self.reasoning_content_is_start = True self.reasoning_content_chunk = self.all_content[self.reasoning_content_start_tag_len:] else: if not self.reasoning_content_is_end: self.reasoning_content_is_end = True self.content += self.all_content return {'content': self.all_content, 'reasoning_content': chunk.additional_kwargs.get('reasoning_content', '') if chunk.additional_kwargs else '' } else: if self.reasoning_content_is_start: self.reasoning_content_chunk += chunk.content reasoning_content_end_tag_prefix_index = self.reasoning_content_chunk.find( self.reasoning_content_end_tag_prefix) if self.reasoning_content_is_end: self.content += chunk.content return {'content': chunk.content, 'reasoning_content': chunk.additional_kwargs.get('reasoning_content', '') if chunk.additional_kwargs else '' } # 是否包含结束 if reasoning_content_end_tag_prefix_index > -1: if len(self.reasoning_content_chunk) - reasoning_content_end_tag_prefix_index >= self.reasoning_content_end_tag_len: reasoning_content_end_tag_index = self.reasoning_content_chunk.find(self.reasoning_content_end_tag) if reasoning_content_end_tag_index > -1: reasoning_content_chunk = self.reasoning_content_chunk[0:reasoning_content_end_tag_index] content_chunk = self.reasoning_content_chunk[ reasoning_content_end_tag_index + self.reasoning_content_end_tag_len:] self.reasoning_content += reasoning_content_chunk self.content += content_chunk self.reasoning_content_chunk = "" self.reasoning_content_is_end = True return {'content': content_chunk, 'reasoning_content': reasoning_content_chunk} else: reasoning_content_chunk = self.reasoning_content_chunk[0:reasoning_content_end_tag_prefix_index + 1] self.reasoning_content_chunk = self.reasoning_content_chunk.replace(reasoning_content_chunk, '') self.reasoning_content += reasoning_content_chunk return {'content': '', 'reasoning_content': reasoning_content_chunk} else: return {'content': '', 'reasoning_content': ''} else: if self.reasoning_content_is_end: self.content += chunk.content return {'content': chunk.content, 'reasoning_content': chunk.additional_kwargs.get('reasoning_content', '') if chunk.additional_kwargs else '' } else: # aaa result = {'content': '', 'reasoning_content': self.reasoning_content_chunk} self.reasoning_content += self.reasoning_content_chunk self.reasoning_content_chunk = "" return result def event_content(chat_id, chat_record_id, response, workflow, write_context, post_handler: WorkFlowPostHandler): """ 用于处理流式输出 @param chat_id: 会话id @param chat_record_id: 对话记录id @param response: 响应数据 @param workflow: 工作流管理器 @param write_context 写入节点上下文 @param post_handler: 后置处理器 """ answer = '' try: for chunk in response: answer += chunk.content yield 'data: ' + json.dumps({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True, 'content': chunk.content, 'is_end': False}, ensure_ascii=False) + "\n\n" write_context(answer, 200) post_handler.handler(chat_id, chat_record_id, answer, workflow) yield 'data: ' + json.dumps({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True, 'content': '', 'is_end': True}, ensure_ascii=False) + "\n\n" except Exception as e: answer = str(e) write_context(answer, 500) post_handler.handler(chat_id, chat_record_id, answer, workflow) yield 'data: ' + json.dumps({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True, 'content': answer, 'is_end': True}, ensure_ascii=False) + "\n\n" def to_stream_response(chat_id, chat_record_id, response: Iterator[BaseMessageChunk], workflow, write_context, post_handler): """ 将结果转换为服务流输出 @param chat_id: 会话id @param chat_record_id: 对话记录id @param response: 响应数据 @param workflow: 工作流管理器 @param write_context 写入节点上下文 @param post_handler: 后置处理器 @return: 响应 """ r = StreamingHttpResponse( streaming_content=event_content(chat_id, chat_record_id, response, workflow, write_context, post_handler), content_type='text/event-stream;charset=utf-8', charset='utf-8') r['Cache-Control'] = 'no-cache' return r def to_response(chat_id, chat_record_id, response: BaseMessage, workflow, write_context, post_handler: WorkFlowPostHandler): """ 将结果转换为服务输出 @param chat_id: 会话id @param chat_record_id: 对话记录id @param response: 响应数据 @param workflow: 工作流管理器 @param write_context 写入节点上下文 @param post_handler: 后置处理器 @return: 响应 """ answer = response.content write_context(answer) post_handler.handler(chat_id, chat_record_id, answer, workflow) return result.success({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True, 'content': answer, 'is_end': True}) def to_response_simple(chat_id, chat_record_id, response: BaseMessage, workflow, post_handler: WorkFlowPostHandler): answer = response.content post_handler.handler(chat_id, chat_record_id, answer, workflow) return result.success({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True, 'content': answer, 'is_end': True}) def to_stream_response_simple(stream_event): r = StreamingHttpResponse( streaming_content=stream_event, content_type='text/event-stream;charset=utf-8', charset='utf-8') r['Cache-Control'] = 'no-cache' return r tool_message_json_template = """ ```json %s ``` """ tool_message_complete_template = """
Called MCP Tool: %s **Input:** %s **Output:** %s
""" def generate_tool_message_complete(name, input_content, output_content): """生成包含输入和输出的工具消息模版""" # 格式化输入 if '```' not in input_content: input_formatted = tool_message_json_template % input_content else: input_formatted = input_content # 格式化输出 if '```' not in output_content: output_formatted = tool_message_json_template % output_content else: output_formatted = output_content return tool_message_complete_template % (name, input_formatted, output_formatted) # 全局单例事件循环 _global_loop = None _loop_thread = None _loop_lock = threading.Lock() def get_global_loop(): """获取全局共享的事件循环""" global _global_loop, _loop_thread with _loop_lock: if _global_loop is None: _global_loop = asyncio.new_event_loop() def run_forever(): asyncio.set_event_loop(_global_loop) _global_loop.run_forever() _loop_thread = threading.Thread(target=run_forever, daemon=True, name="GlobalAsyncLoop") _loop_thread.start() return _global_loop async def _yield_mcp_response(chat_model, message_list, mcp_servers, mcp_output_enable=True): try: client = MultiServerMCPClient(json.loads(mcp_servers)) tools = await client.get_tools() agent = create_react_agent(chat_model, tools) response = agent.astream({"messages": message_list}, stream_mode='messages') # 用于存储工具调用信息 tool_calls_info = {} async for chunk in response: if isinstance(chunk[0], AIMessageChunk): tool_calls = chunk[0].additional_kwargs.get('tool_calls', []) for tool_call in tool_calls: tool_id = tool_call.get('id', '') if tool_id: # 保存工具调用的输入 tool_calls_info[tool_id] = { 'name': tool_call.get('function', {}).get('name', ''), 'input': tool_call.get('function', {}).get('arguments', '') } yield chunk[0] if mcp_output_enable and isinstance(chunk[0], ToolMessage): tool_id = chunk[0].tool_call_id if tool_id in tool_calls_info: # 合并输入和输出 tool_info = tool_calls_info[tool_id] content = generate_tool_message_complete( tool_info['name'], tool_info['input'], chunk[0].content ) chunk[0].content = content yield chunk[0] except ExceptionGroup as eg: def get_real_error(exc): if isinstance(exc, ExceptionGroup): return get_real_error(exc.exceptions[0]) return exc real_error = get_real_error(eg) error_msg = f"{type(real_error).__name__}: {str(real_error)}" raise RuntimeError(error_msg) from None except Exception as e: error_msg = f"{type(e).__name__}: {str(e)}" raise RuntimeError(error_msg) from None def mcp_response_generator(chat_model, message_list, mcp_servers, mcp_output_enable=True): """使用全局事件循环,不创建新实例""" result_queue = queue.Queue() loop = get_global_loop() # 使用共享循环 async def _run(): try: async_gen = _yield_mcp_response(chat_model, message_list, mcp_servers, mcp_output_enable) async for chunk in async_gen: result_queue.put(('data', chunk)) except Exception as e: maxkb_logger.error(f'Exception: {e}', exc_info=True) result_queue.put(('error', e)) finally: result_queue.put(('done', None)) # 在全局循环中调度任务 asyncio.run_coroutine_threadsafe(_run(), loop) while True: msg_type, data = result_queue.get() if msg_type == 'done': break if msg_type == 'error': raise data yield data async def anext_async(agen): return await agen.__anext__()