# coding=utf-8 """ @project: maxkb @Author:虎 @file: document_serializers.py @date:2023/9/22 13:43 @desc: """ import logging import os import re import traceback import uuid from functools import reduce from typing import List, Dict import openpyxl from celery_once import AlreadyQueued from django.core import validators from django.db import transaction from django.db.models import QuerySet from django.http import HttpResponse from drf_yasg import openapi from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE from rest_framework import serializers from xlwt import Utils from common.db.search import native_search, native_page_search from common.event.common import work_thread_pool from common.exception.app_exception import AppApiException from common.handle.impl.doc_split_handle import DocSplitHandle from common.handle.impl.html_split_handle import HTMLSplitHandle from common.handle.impl.pdf_split_handle import PdfSplitHandle from common.handle.impl.qa.csv_parse_qa_handle import CsvParseQAHandle from common.handle.impl.qa.xls_parse_qa_handle import XlsParseQAHandle from common.handle.impl.qa.xlsx_parse_qa_handle import XlsxParseQAHandle from common.handle.impl.table.csv_parse_table_handle import CsvSplitHandle from common.handle.impl.table.xls_parse_table_handle import XlsSplitHandle from common.handle.impl.table.xlsx_parse_table_handle import XlsxSplitHandle from common.handle.impl.text_split_handle import TextSplitHandle from common.mixins.api_mixin import ApiMixin from common.util.common import post, flat_map from common.util.field_message import ErrMessage from common.util.file_util import get_file_content from common.util.fork import Fork from common.util.split_model import get_split_model from dataset.models.data_set import DataSet, Document, Paragraph, Problem, Type, Status, ProblemParagraphMapping, Image from dataset.serializers.common_serializers import BatchSerializer, MetaSerializer, ProblemParagraphManage, \ get_embedding_model_id_by_dataset_id from dataset.serializers.paragraph_serializers import ParagraphSerializers, ParagraphInstanceSerializer from dataset.task import sync_web_document, generate_related_by_document_id from embedding.task.embedding import embedding_by_document, delete_embedding_by_document_list, \ delete_embedding_by_document, update_embedding_dataset_id, delete_embedding_by_paragraph_ids, \ embedding_by_document_list from smartdoc.conf import PROJECT_DIR parse_qa_handle_list = [XlsParseQAHandle(), CsvParseQAHandle(), XlsxParseQAHandle()] parse_table_handle_list = [CsvSplitHandle(), XlsSplitHandle(), XlsxSplitHandle()] class FileBufferHandle: buffer = None def get_buffer(self, file): if self.buffer is None: self.buffer = file.read() return self.buffer class DocumentEditInstanceSerializer(ApiMixin, serializers.Serializer): meta = serializers.DictField(required=False) name = serializers.CharField(required=False, max_length=128, min_length=1, error_messages=ErrMessage.char( "文档名称")) hit_handling_method = serializers.CharField(required=False, validators=[ validators.RegexValidator(regex=re.compile("^optimization|directly_return$"), message="类型只支持optimization|directly_return", code=500) ], error_messages=ErrMessage.char("命中处理方式")) directly_return_similarity = serializers.FloatField(required=False, max_value=2, min_value=0, error_messages=ErrMessage.float( "直接返回分数")) is_active = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean( "文档是否可用")) @staticmethod def get_meta_valid_map(): dataset_meta_valid_map = { Type.base: MetaSerializer.BaseMeta, Type.web: MetaSerializer.WebMeta } return dataset_meta_valid_map def is_valid(self, *, document: Document = None): super().is_valid(raise_exception=True) if 'meta' in self.data and self.data.get('meta') is not None: dataset_meta_valid_map = self.get_meta_valid_map() valid_class = dataset_meta_valid_map.get(document.type) valid_class(data=self.data.get('meta')).is_valid(raise_exception=True) class DocumentWebInstanceSerializer(ApiMixin, serializers.Serializer): source_url_list = serializers.ListField(required=True, child=serializers.CharField(required=True, error_messages=ErrMessage.char( "文档地址")), error_messages=ErrMessage.char( "文档地址列表")) selector = serializers.CharField(required=False, allow_null=True, allow_blank=True, error_messages=ErrMessage.char( "选择器")) @staticmethod def get_request_params_api(): return [openapi.Parameter(name='file', in_=openapi.IN_FORM, type=openapi.TYPE_ARRAY, items=openapi.Items(type=openapi.TYPE_FILE), required=True, description='上传文件'), openapi.Parameter(name='dataset_id', in_=openapi.IN_PATH, type=openapi.TYPE_STRING, required=True, description='知识库id'), ] class DocumentInstanceSerializer(ApiMixin, serializers.Serializer): name = serializers.CharField(required=True, error_messages=ErrMessage.char("文档名称"), max_length=128, min_length=1) paragraphs = ParagraphInstanceSerializer(required=False, many=True, allow_null=True) @staticmethod def get_request_body_api(): return openapi.Schema( type=openapi.TYPE_OBJECT, required=['name', 'paragraphs'], properties={ 'name': openapi.Schema(type=openapi.TYPE_STRING, title="文档名称", description="文档名称"), 'paragraphs': openapi.Schema(type=openapi.TYPE_ARRAY, title="段落列表", description="段落列表", items=ParagraphSerializers.Create.get_request_body_api()) } ) class DocumentInstanceQASerializer(ApiMixin, serializers.Serializer): file_list = serializers.ListSerializer(required=True, error_messages=ErrMessage.list("文件列表"), child=serializers.FileField(required=True, error_messages=ErrMessage.file("文件"))) class DocumentInstanceTableSerializer(ApiMixin, serializers.Serializer): file_list = serializers.ListSerializer(required=True, error_messages=ErrMessage.list("文件列表"), child=serializers.FileField(required=True, error_messages=ErrMessage.file("文件"))) class DocumentSerializers(ApiMixin, serializers.Serializer): class Export(ApiMixin, serializers.Serializer): type = serializers.CharField(required=True, validators=[ validators.RegexValidator(regex=re.compile("^csv|excel$"), message="模版类型只支持excel|csv", code=500) ], error_messages=ErrMessage.char("模版类型")) @staticmethod def get_request_params_api(): return [openapi.Parameter(name='type', in_=openapi.IN_QUERY, type=openapi.TYPE_STRING, required=True, description='导出模板类型csv|excel'), ] def export(self, with_valid=True): if with_valid: self.is_valid(raise_exception=True) if self.data.get('type') == 'csv': file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'csv_template.csv'), "rb") content = file.read() file.close() return HttpResponse(content, status=200, headers={'Content-Type': 'text/cxv', 'Content-Disposition': 'attachment; filename="csv_template.csv"'}) elif self.data.get('type') == 'excel': file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'excel_template.xlsx'), "rb") content = file.read() file.close() return HttpResponse(content, status=200, headers={'Content-Type': 'application/vnd.ms-excel', 'Content-Disposition': 'attachment; filename="excel_template.xlsx"'}) def table_export(self, with_valid=True): if with_valid: self.is_valid(raise_exception=True) if self.data.get('type') == 'csv': file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'MaxKB表格模板.csv'), "rb") content = file.read() file.close() return HttpResponse(content, status=200, headers={'Content-Type': 'text/cxv', 'Content-Disposition': 'attachment; filename="csv_template.csv"'}) elif self.data.get('type') == 'excel': file = open(os.path.join(PROJECT_DIR, "apps", "dataset", 'template', 'MaxKB表格模板.xlsx'), "rb") content = file.read() file.close() return HttpResponse(content, status=200, headers={'Content-Type': 'application/vnd.ms-excel', 'Content-Disposition': 'attachment; filename="excel_template.xlsx"'}) class Migrate(ApiMixin, serializers.Serializer): dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char( "知识库id")) target_dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char( "目标知识库id")) document_id_list = serializers.ListField(required=True, error_messages=ErrMessage.char("文档列表"), child=serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("文档id"))) @transaction.atomic def migrate(self, with_valid=True): if with_valid: self.is_valid(raise_exception=True) dataset_id = self.data.get('dataset_id') target_dataset_id = self.data.get('target_dataset_id') dataset = QuerySet(DataSet).filter(id=dataset_id).first() target_dataset = QuerySet(DataSet).filter(id=target_dataset_id).first() document_id_list = self.data.get('document_id_list') document_list = QuerySet(Document).filter(dataset_id=dataset_id, id__in=document_id_list) paragraph_list = QuerySet(Paragraph).filter(dataset_id=dataset_id, document_id__in=document_id_list) problem_paragraph_mapping_list = QuerySet(ProblemParagraphMapping).filter(paragraph__in=paragraph_list) problem_list = QuerySet(Problem).filter( id__in=[problem_paragraph_mapping.problem_id for problem_paragraph_mapping in problem_paragraph_mapping_list]) target_problem_list = list( QuerySet(Problem).filter(content__in=[problem.content for problem in problem_list], dataset_id=target_dataset_id)) target_handle_problem_list = [ self.get_target_dataset_problem(target_dataset_id, problem_paragraph_mapping, problem_list, target_problem_list) for problem_paragraph_mapping in problem_paragraph_mapping_list] create_problem_list = [problem for problem, is_create in target_handle_problem_list if is_create is not None and is_create] # 插入问题 QuerySet(Problem).bulk_create(create_problem_list) # 修改mapping QuerySet(ProblemParagraphMapping).bulk_update(problem_paragraph_mapping_list, ['problem_id', 'dataset_id']) # 修改文档 if dataset.type == Type.base.value and target_dataset.type == Type.web.value: document_list.update(dataset_id=target_dataset_id, type=Type.web, meta={'source_url': '', 'selector': ''}) elif target_dataset.type == Type.base.value and dataset.type == Type.web.value: document_list.update(dataset_id=target_dataset_id, type=Type.base, meta={}) else: document_list.update(dataset_id=target_dataset_id) model_id = None if dataset.embedding_mode_id != target_dataset.embedding_mode_id: model_id = get_embedding_model_id_by_dataset_id(target_dataset_id) pid_list = [paragraph.id for paragraph in paragraph_list] # 修改段落信息 paragraph_list.update(dataset_id=target_dataset_id) # 修改向量信息 if model_id: delete_embedding_by_paragraph_ids(pid_list) QuerySet(Document).filter(id__in=document_id_list).update(status=Status.queue_up) embedding_by_document_list.delay(document_id_list, model_id) else: update_embedding_dataset_id(pid_list, target_dataset_id) @staticmethod def get_target_dataset_problem(target_dataset_id: str, problem_paragraph_mapping, source_problem_list, target_problem_list): source_problem_list = [source_problem for source_problem in source_problem_list if source_problem.id == problem_paragraph_mapping.problem_id] problem_paragraph_mapping.dataset_id = target_dataset_id if len(source_problem_list) > 0: problem_content = source_problem_list[-1].content problem_list = [problem for problem in target_problem_list if problem.content == problem_content] if len(problem_list) > 0: problem = problem_list[-1] problem_paragraph_mapping.problem_id = problem.id return problem, False else: problem = Problem(id=uuid.uuid1(), dataset_id=target_dataset_id, content=problem_content) target_problem_list.append(problem) problem_paragraph_mapping.problem_id = problem.id return problem, True return None @staticmethod def get_request_params_api(): return [openapi.Parameter(name='dataset_id', in_=openapi.IN_PATH, type=openapi.TYPE_STRING, required=True, description='知识库id'), openapi.Parameter(name='target_dataset_id', in_=openapi.IN_PATH, type=openapi.TYPE_STRING, required=True, description='目标知识库id') ] @staticmethod def get_request_body_api(): return openapi.Schema( type=openapi.TYPE_ARRAY, items=openapi.Schema(type=openapi.TYPE_STRING), title='文档id列表', description="文档id列表" ) class Query(ApiMixin, serializers.Serializer): # 知识库id dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char( "知识库id")) name = serializers.CharField(required=False, max_length=128, min_length=1, error_messages=ErrMessage.char( "文档名称")) hit_handling_method = serializers.CharField(required=False, error_messages=ErrMessage.char("命中处理方式")) is_active = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean("文档是否可用")) status = serializers.CharField(required=False, error_messages=ErrMessage.char("文档状态")) def get_query_set(self): query_set = QuerySet(model=Document) query_set = query_set.filter(**{'dataset_id': self.data.get("dataset_id")}) if 'name' in self.data and self.data.get('name') is not None: query_set = query_set.filter(**{'name__icontains': self.data.get('name')}) if 'hit_handling_method' in self.data and self.data.get('hit_handling_method') is not None: query_set = query_set.filter(**{'hit_handling_method': self.data.get('hit_handling_method')}) if 'is_active' in self.data and self.data.get('is_active') is not None: query_set = query_set.filter(**{'is_active': self.data.get('is_active')}) if 'status' in self.data and self.data.get('status') is not None: query_set = query_set.filter(**{'status': self.data.get('status')}) query_set = query_set.order_by('-create_time') return query_set def list(self, with_valid=False): if with_valid: self.is_valid(raise_exception=True) query_set = self.get_query_set() return native_search(query_set, select_string=get_file_content( os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql'))) def page(self, current_page, page_size): query_set = self.get_query_set() return native_page_search(current_page, page_size, query_set, select_string=get_file_content( os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql'))) @staticmethod def get_request_params_api(): return [openapi.Parameter(name='name', in_=openapi.IN_QUERY, type=openapi.TYPE_STRING, required=False, description='文档名称'), openapi.Parameter(name='hit_handling_method', in_=openapi.IN_QUERY, type=openapi.TYPE_STRING, required=False, description='文档命中处理方式')] @staticmethod def get_response_body_api(): return openapi.Schema(type=openapi.TYPE_ARRAY, title="文档列表", description="文档列表", items=DocumentSerializers.Operate.get_response_body_api()) class Sync(ApiMixin, serializers.Serializer): document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char( "文档id")) def is_valid(self, *, raise_exception=False): super().is_valid(raise_exception=True) document_id = self.data.get('document_id') first = QuerySet(Document).filter(id=document_id).first() if first is None: raise AppApiException(500, "文档id不存在") if first.type != Type.web: raise AppApiException(500, "只有web站点类型才支持同步") def sync(self, with_valid=True, with_embedding=True): if with_valid: self.is_valid(raise_exception=True) document_id = self.data.get('document_id') document = QuerySet(Document).filter(id=document_id).first() if document.type != Type.web: return True try: document.status = Status.queue_up document.save() source_url = document.meta.get('source_url') selector_list = document.meta.get('selector').split( " ") if 'selector' in document.meta and document.meta.get('selector') is not None else [] result = Fork(source_url, selector_list).fork() if result.status == 200: # 删除段落 QuerySet(model=Paragraph).filter(document_id=document_id).delete() # 删除问题 QuerySet(model=ProblemParagraphMapping).filter(document_id=document_id).delete() # 删除向量库 delete_embedding_by_document(document_id) paragraphs = get_split_model('web.md').parse(result.content) document.char_length = reduce(lambda x, y: x + y, [len(p.get('content')) for p in paragraphs], 0) document.save() document_paragraph_model = DocumentSerializers.Create.get_paragraph_model(document, paragraphs) paragraph_model_list = document_paragraph_model.get('paragraph_model_list') problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list') problem_model_list, problem_paragraph_mapping_list = ProblemParagraphManage( problem_paragraph_object_list, document.dataset_id).to_problem_model_list() # 批量插入段落 QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None # 批量插入问题 QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None # 插入关联问题 QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len( problem_paragraph_mapping_list) > 0 else None # 向量化 if with_embedding: embedding_model_id = get_embedding_model_id_by_dataset_id(document.dataset_id) embedding_by_document.delay(document_id, embedding_model_id) else: document.status = Status.error document.save() except Exception as e: logging.getLogger("max_kb_error").error(f'{str(e)}:{traceback.format_exc()}') document.status = Status.error document.save() return True class Operate(ApiMixin, serializers.Serializer): document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char( "文档id")) dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char("数据集id")) @staticmethod def get_request_params_api(): return [openapi.Parameter(name='dataset_id', in_=openapi.IN_PATH, type=openapi.TYPE_STRING, required=True, description='知识库id'), openapi.Parameter(name='document_id', in_=openapi.IN_PATH, type=openapi.TYPE_STRING, required=True, description='文档id') ] def is_valid(self, *, raise_exception=False): super().is_valid(raise_exception=True) document_id = self.data.get('document_id') if not QuerySet(Document).filter(id=document_id).exists(): raise AppApiException(500, "文档id不存在") def export(self, with_valid=True): if with_valid: self.is_valid(raise_exception=True) document = QuerySet(Document).filter(id=self.data.get("document_id")).first() paragraph_list = native_search(QuerySet(Paragraph).filter(document_id=self.data.get("document_id")), get_file_content( os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_paragraph_document_name.sql'))) problem_mapping_list = native_search( QuerySet(ProblemParagraphMapping).filter(document_id=self.data.get("document_id")), get_file_content( os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_problem_mapping.sql')), with_table_name=True) data_dict, document_dict = self.merge_problem(paragraph_list, problem_mapping_list, [document]) workbook = self.get_workbook(data_dict, document_dict) response = HttpResponse(content_type='application/vnd.ms-excel') response['Content-Disposition'] = f'attachment; filename="data.xlsx"' workbook.save(response) return response @staticmethod def get_workbook(data_dict, document_dict): # 创建工作簿对象 workbook = openpyxl.Workbook() workbook.remove_sheet(workbook.active) for sheet_id in data_dict: # 添加工作表 worksheet = workbook.create_sheet(document_dict.get(sheet_id)) data = [ ['分段标题(选填)', '分段内容(必填,问题答案,最长不超过4096个字符)', '问题(选填,单元格内一行一个)'], *data_dict.get(sheet_id, []) ] # 写入数据到工作表 for row_idx, row in enumerate(data): for col_idx, col in enumerate(row): cell = worksheet.cell(row=row_idx + 1, column=col_idx + 1) if isinstance(col, str): col = re.sub(ILLEGAL_CHARACTERS_RE, '', col) cell.value = col # 创建HttpResponse对象返回Excel文件 return workbook @staticmethod def merge_problem(paragraph_list: List[Dict], problem_mapping_list: List[Dict], document_list): result = {} document_dict = {} for paragraph in paragraph_list: problem_list = [problem_mapping.get('content') for problem_mapping in problem_mapping_list if problem_mapping.get('paragraph_id') == paragraph.get('id')] document_sheet = result.get(paragraph.get('document_id')) document_name = DocumentSerializers.Operate.reset_document_name(paragraph.get('document_name')) d = document_dict.get(document_name) if d is None: document_dict[document_name] = {paragraph.get('document_id')} else: d.add(paragraph.get('document_id')) if document_sheet is None: result[paragraph.get('document_id')] = [[paragraph.get('title'), paragraph.get('content'), '\n'.join(problem_list)]] else: document_sheet.append([paragraph.get('title'), paragraph.get('content'), '\n'.join(problem_list)]) for document in document_list: if document.id not in result: document_name = DocumentSerializers.Operate.reset_document_name(document.name) result[document.id] = [[]] d = document_dict.get(document_name) if d is None: document_dict[document_name] = {document.id} else: d.add(document.id) result_document_dict = {} for d_name in document_dict: for index, d_id in enumerate(document_dict.get(d_name)): result_document_dict[d_id] = d_name if index == 0 else d_name + str(index) return result, result_document_dict @staticmethod def reset_document_name(document_name): if document_name is None or not Utils.valid_sheet_name(document_name): return "Sheet" return document_name.strip() def one(self, with_valid=False): if with_valid: self.is_valid(raise_exception=True) query_set = QuerySet(model=Document) query_set = query_set.filter(**{'id': self.data.get("document_id")}) return native_search(query_set, select_string=get_file_content( os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql')), with_search_one=True) def edit(self, instance: Dict, with_valid=False): if with_valid: self.is_valid(raise_exception=True) _document = QuerySet(Document).get(id=self.data.get("document_id")) if with_valid: DocumentEditInstanceSerializer(data=instance).is_valid(document=_document) update_keys = ['name', 'is_active', 'hit_handling_method', 'directly_return_similarity', 'meta'] for update_key in update_keys: if update_key in instance and instance.get(update_key) is not None: _document.__setattr__(update_key, instance.get(update_key)) _document.save() return self.one() def refresh(self, with_valid=True): if with_valid: self.is_valid(raise_exception=True) document_id = self.data.get("document_id") QuerySet(Document).filter(id=document_id).update(**{'status': Status.queue_up}) QuerySet(Paragraph).filter(document_id=document_id).update(**{'status': Status.queue_up}) embedding_model_id = get_embedding_model_id_by_dataset_id(dataset_id=self.data.get('dataset_id')) try: embedding_by_document.delay(document_id, embedding_model_id) except AlreadyQueued as e: raise AppApiException(500, "任务正在执行中,请勿重复下发") @transaction.atomic def delete(self): document_id = self.data.get("document_id") QuerySet(model=Document).filter(id=document_id).delete() # 删除段落 QuerySet(model=Paragraph).filter(document_id=document_id).delete() # 删除问题 QuerySet(model=ProblemParagraphMapping).filter(document_id=document_id).delete() # 删除向量库 delete_embedding_by_document(document_id) return True @staticmethod def get_response_body_api(): return openapi.Schema( type=openapi.TYPE_OBJECT, required=['id', 'name', 'char_length', 'user_id', 'paragraph_count', 'is_active' 'update_time', 'create_time'], properties={ 'id': openapi.Schema(type=openapi.TYPE_STRING, title="id", description="id", default="xx"), 'name': openapi.Schema(type=openapi.TYPE_STRING, title="名称", description="名称", default="测试知识库"), 'char_length': openapi.Schema(type=openapi.TYPE_INTEGER, title="字符数", description="字符数", default=10), 'user_id': openapi.Schema(type=openapi.TYPE_STRING, title="用户id", description="用户id"), 'paragraph_count': openapi.Schema(type=openapi.TYPE_INTEGER, title="文档数量", description="文档数量", default=1), 'is_active': openapi.Schema(type=openapi.TYPE_BOOLEAN, title="是否可用", description="是否可用", default=True), 'update_time': openapi.Schema(type=openapi.TYPE_STRING, title="修改时间", description="修改时间", default="1970-01-01 00:00:00"), 'create_time': openapi.Schema(type=openapi.TYPE_STRING, title="创建时间", description="创建时间", default="1970-01-01 00:00:00" ) } ) @staticmethod def get_request_body_api(): return openapi.Schema( type=openapi.TYPE_OBJECT, properties={ 'name': openapi.Schema(type=openapi.TYPE_STRING, title="文档名称", description="文档名称"), 'is_active': openapi.Schema(type=openapi.TYPE_BOOLEAN, title="是否可用", description="是否可用"), 'hit_handling_method': openapi.Schema(type=openapi.TYPE_STRING, title="命中处理方式", description="ai优化:optimization,直接返回:directly_return"), 'directly_return_similarity': openapi.Schema(type=openapi.TYPE_NUMBER, title="直接返回分数", default=0.9), 'meta': openapi.Schema(type=openapi.TYPE_OBJECT, title="文档元数据", description="文档元数据->web:{source_url:xxx,selector:'xxx'},base:{}"), } ) class Create(ApiMixin, serializers.Serializer): dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.char( "文档id")) def is_valid(self, *, raise_exception=False): super().is_valid(raise_exception=True) if not QuerySet(DataSet).filter(id=self.data.get('dataset_id')).exists(): raise AppApiException(10000, "知识库id不存在") return True @staticmethod def post_embedding(result, document_id, dataset_id): model_id = get_embedding_model_id_by_dataset_id(dataset_id) embedding_by_document.delay(document_id, model_id) return result @staticmethod def parse_qa_file(file): get_buffer = FileBufferHandle().get_buffer for parse_qa_handle in parse_qa_handle_list: if parse_qa_handle.support(file, get_buffer): return parse_qa_handle.handle(file, get_buffer, save_image) raise AppApiException(500, '不支持的文件格式') @staticmethod def parse_table_file(file): get_buffer = FileBufferHandle().get_buffer for parse_table_handle in parse_table_handle_list: if parse_table_handle.support(file, get_buffer): return parse_table_handle.handle(file, get_buffer, save_image) raise AppApiException(500, '不支持的文件格式') def save_qa(self, instance: Dict, with_valid=True): if with_valid: DocumentInstanceQASerializer(data=instance).is_valid(raise_exception=True) self.is_valid(raise_exception=True) file_list = instance.get('file_list') document_list = flat_map([self.parse_qa_file(file) for file in file_list]) return DocumentSerializers.Batch(data={'dataset_id': self.data.get('dataset_id')}).batch_save(document_list) def save_table(self, instance: Dict, with_valid=True): if with_valid: DocumentInstanceTableSerializer(data=instance).is_valid(raise_exception=True) self.is_valid(raise_exception=True) file_list = instance.get('file_list') document_list = flat_map([self.parse_table_file(file) for file in file_list]) return DocumentSerializers.Batch(data={'dataset_id': self.data.get('dataset_id')}).batch_save(document_list) @post(post_function=post_embedding) @transaction.atomic def save(self, instance: Dict, with_valid=False, **kwargs): if with_valid: DocumentInstanceSerializer(data=instance).is_valid(raise_exception=True) self.is_valid(raise_exception=True) dataset_id = self.data.get('dataset_id') document_paragraph_model = self.get_document_paragraph_model(dataset_id, instance) document_model = document_paragraph_model.get('document') paragraph_model_list = document_paragraph_model.get('paragraph_model_list') problem_paragraph_object_list = document_paragraph_model.get('problem_paragraph_object_list') problem_model_list, problem_paragraph_mapping_list = (ProblemParagraphManage(problem_paragraph_object_list, dataset_id) .to_problem_model_list()) # 插入文档 document_model.save() # 批量插入段落 QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None # 批量插入问题 QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None # 批量插入关联问题 QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len( problem_paragraph_mapping_list) > 0 else None document_id = str(document_model.id) return DocumentSerializers.Operate( data={'dataset_id': dataset_id, 'document_id': document_id}).one( with_valid=True), document_id, dataset_id def save_web(self, instance: Dict, with_valid=True): if with_valid: DocumentWebInstanceSerializer(data=instance).is_valid(raise_exception=True) self.is_valid(raise_exception=True) dataset_id = self.data.get('dataset_id') source_url_list = instance.get('source_url_list') selector = instance.get('selector') sync_web_document.delay(dataset_id, source_url_list, selector) @staticmethod def get_paragraph_model(document_model, paragraph_list: List): dataset_id = document_model.dataset_id paragraph_model_dict_list = [ParagraphSerializers.Create( data={'dataset_id': dataset_id, 'document_id': str(document_model.id)}).get_paragraph_problem_model( dataset_id, document_model.id, paragraph) for paragraph in paragraph_list] paragraph_model_list = [] problem_paragraph_object_list = [] for paragraphs in paragraph_model_dict_list: paragraph = paragraphs.get('paragraph') for problem_model in paragraphs.get('problem_paragraph_object_list'): problem_paragraph_object_list.append(problem_model) paragraph_model_list.append(paragraph) return {'document': document_model, 'paragraph_model_list': paragraph_model_list, 'problem_paragraph_object_list': problem_paragraph_object_list} @staticmethod def get_document_paragraph_model(dataset_id, instance: Dict): document_model = Document( **{'dataset_id': dataset_id, 'id': uuid.uuid1(), 'name': instance.get('name'), 'char_length': reduce(lambda x, y: x + y, [len(p.get('content')) for p in instance.get('paragraphs', [])], 0), 'meta': instance.get('meta') if instance.get('meta') is not None else {}, 'type': instance.get('type') if instance.get('type') is not None else Type.base}) return DocumentSerializers.Create.get_paragraph_model(document_model, instance.get('paragraphs') if 'paragraphs' in instance else []) @staticmethod def get_request_body_api(): return DocumentInstanceSerializer.get_request_body_api() @staticmethod def get_request_params_api(): return [openapi.Parameter(name='dataset_id', in_=openapi.IN_PATH, type=openapi.TYPE_STRING, required=True, description='知识库id') ] class Split(ApiMixin, serializers.Serializer): file = serializers.ListField(required=True, error_messages=ErrMessage.list( "文件列表")) limit = serializers.IntegerField(required=False, error_messages=ErrMessage.integer( "分段长度")) patterns = serializers.ListField(required=False, child=serializers.CharField(required=True, error_messages=ErrMessage.char( "分段标识")), error_messages=ErrMessage.uuid( "分段标识列表")) with_filter = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean( "自动清洗")) def is_valid(self, *, raise_exception=True): super().is_valid(raise_exception=True) files = self.data.get('file') for f in files: if f.size > 1024 * 1024 * 100: raise AppApiException(500, "上传文件最大不能超过100MB") @staticmethod def get_request_params_api(): return [ openapi.Parameter(name='file', in_=openapi.IN_FORM, type=openapi.TYPE_ARRAY, items=openapi.Items(type=openapi.TYPE_FILE), required=True, description='上传文件'), openapi.Parameter(name='limit', in_=openapi.IN_FORM, required=False, type=openapi.TYPE_INTEGER, title="分段长度", description="分段长度"), openapi.Parameter(name='patterns', in_=openapi.IN_FORM, required=False, type=openapi.TYPE_ARRAY, items=openapi.Items(type=openapi.TYPE_STRING), title="分段正则列表", description="分段正则列表"), openapi.Parameter(name='with_filter', in_=openapi.IN_FORM, required=False, type=openapi.TYPE_BOOLEAN, title="是否清除特殊字符", description="是否清除特殊字符"), ] def parse(self): file_list = self.data.get("file") return list( map(lambda f: file_to_paragraph(f, self.data.get("patterns", None), self.data.get("with_filter", None), self.data.get("limit", 4096)), file_list)) class SplitPattern(ApiMixin, serializers.Serializer): @staticmethod def list(): return [{'key': "#", 'value': '(?<=^)# .*|(?<=\\n)# .*'}, {'key': '##', 'value': '(?<=\\n)(? 0 else None # 批量插入段落 QuerySet(Paragraph).bulk_create(paragraph_model_list) if len(paragraph_model_list) > 0 else None # 批量插入问题 QuerySet(Problem).bulk_create(problem_model_list) if len(problem_model_list) > 0 else None # 批量插入关联问题 QuerySet(ProblemParagraphMapping).bulk_create(problem_paragraph_mapping_list) if len( problem_paragraph_mapping_list) > 0 else None # 查询文档 query_set = QuerySet(model=Document) if len(document_model_list) == 0: return [], query_set = query_set.filter(**{'id__in': [d.id for d in document_model_list]}) return native_search(query_set, select_string=get_file_content( os.path.join(PROJECT_DIR, "apps", "dataset", 'sql', 'list_document.sql')), with_search_one=False), dataset_id @staticmethod def _batch_sync(document_id_list: List[str]): for document_id in document_id_list: DocumentSerializers.Sync(data={'document_id': document_id}).sync() def batch_sync(self, instance: Dict, with_valid=True): if with_valid: BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True) self.is_valid(raise_exception=True) # 异步同步 work_thread_pool.submit(self._batch_sync, instance.get('id_list')) return True @transaction.atomic def batch_delete(self, instance: Dict, with_valid=True): if with_valid: BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True) self.is_valid(raise_exception=True) document_id_list = instance.get("id_list") QuerySet(Document).filter(id__in=document_id_list).delete() QuerySet(Paragraph).filter(document_id__in=document_id_list).delete() QuerySet(ProblemParagraphMapping).filter(document_id__in=document_id_list).delete() # 删除向量库 delete_embedding_by_document_list(document_id_list) return True def batch_edit_hit_handling(self, instance: Dict, with_valid=True): if with_valid: BatchSerializer(data=instance).is_valid(model=Document, raise_exception=True) hit_handling_method = instance.get('hit_handling_method') if hit_handling_method is None: raise AppApiException(500, '命中处理方式必填') if hit_handling_method != 'optimization' and hit_handling_method != 'directly_return': raise AppApiException(500, '命中处理方式必须为directly_return|optimization') self.is_valid(raise_exception=True) document_id_list = instance.get("id_list") hit_handling_method = instance.get('hit_handling_method') directly_return_similarity = instance.get('directly_return_similarity') update_dict = {'hit_handling_method': hit_handling_method} if directly_return_similarity is not None: update_dict['directly_return_similarity'] = directly_return_similarity QuerySet(Document).filter(id__in=document_id_list).update(**update_dict) def batch_refresh(self, instance: Dict, with_valid=True): if with_valid: self.is_valid(raise_exception=True) document_id_list = instance.get("id_list") with transaction.atomic(): Document.objects.filter(id__in=document_id_list).update(status=Status.queue_up) Paragraph.objects.filter(document_id__in=document_id_list).update(status=Status.queue_up) dataset_id = self.data.get('dataset_id') embedding_model_id = get_embedding_model_id_by_dataset_id(dataset_id=dataset_id) for document_id in document_id_list: try: embedding_by_document.delay(document_id, embedding_model_id) except AlreadyQueued as e: raise AppApiException(500, "任务正在执行中,请勿重复下发") class GenerateRelated(ApiMixin, serializers.Serializer): document_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("文档id")) def is_valid(self, *, raise_exception=False): super().is_valid(raise_exception=True) document_id = self.data.get('document_id') if not QuerySet(Document).filter(id=document_id).exists(): raise AppApiException(500, "文档id不存在") def generate_related(self, model_id, prompt, with_valid=True): if with_valid: self.is_valid(raise_exception=True) document_id = self.data.get('document_id') QuerySet(Document).filter(id=document_id).update(status=Status.queue_up) generate_related_by_document_id.delay(document_id, model_id, prompt) class BatchGenerateRelated(ApiMixin, serializers.Serializer): dataset_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("知识库id")) @transaction.atomic def batch_generate_related(self, instance: Dict, with_valid=True): if with_valid: self.is_valid(raise_exception=True) document_id_list = instance.get("document_id_list") model_id = instance.get("model_id") prompt = instance.get("prompt") for document_id in document_id_list: DocumentSerializers.GenerateRelated(data={'document_id': document_id}).generate_related(model_id, prompt) class FileBufferHandle: buffer = None def get_buffer(self, file): if self.buffer is None: self.buffer = file.read() return self.buffer default_split_handle = TextSplitHandle() split_handles = [HTMLSplitHandle(), DocSplitHandle(), PdfSplitHandle(), default_split_handle] def save_image(image_list): if image_list is not None and len(image_list) > 0: QuerySet(Image).bulk_create(image_list) def file_to_paragraph(file, pattern_list: List, with_filter: bool, limit: int): get_buffer = FileBufferHandle().get_buffer for split_handle in split_handles: if split_handle.support(file, get_buffer): return split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, save_image) return default_split_handle.handle(file, pattern_list, with_filter, limit, get_buffer, save_image)