from typing import Dict, List from langchain_core.messages import BaseMessage, get_buffer_string from common.config.tokenizer_manage_config import TokenizerManage from models_provider.base_model_provider import MaxKBBaseModel from models_provider.impl.base_chat_open_ai import BaseChatOpenAI class XinferenceImage(MaxKBBaseModel, BaseChatOpenAI): @staticmethod def is_cache_model(): return False @staticmethod def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs): optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs) return XinferenceImage( model_name=model_name, openai_api_base=model_credential.get('api_base'), openai_api_key=model_credential.get('api_key'), # stream_options={"include_usage": True}, streaming=True, stream_usage=True, extra_body=optional_params ) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: if self.usage_metadata is None or self.usage_metadata == {}: tokenizer = TokenizerManage.get_tokenizer() return sum([len(tokenizer.encode(get_buffer_string([m]))) for m in messages]) return self.usage_metadata.get('input_tokens', 0) def get_num_tokens(self, text: str) -> int: if self.usage_metadata is None or self.usage_metadata == {}: tokenizer = TokenizerManage.get_tokenizer() return len(tokenizer.encode(text)) return self.get_last_generation_info().get('output_tokens', 0)