from typing import Dict, List from langchain_core.messages import BaseMessage, get_buffer_string from langchain_openai import AzureChatOpenAI from common.config.tokenizer_manage_config import TokenizerManage from models_provider.base_model_provider import MaxKBBaseModel def custom_get_token_ids(text: str): tokenizer = TokenizerManage.get_tokenizer() return tokenizer.encode(text) class AzureOpenAIImage(MaxKBBaseModel, AzureChatOpenAI): @staticmethod def is_cache_model(): return False @staticmethod def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs): optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs) return AzureOpenAIImage( model_name=model_name, openai_api_key=model_credential.get('api_key'), azure_endpoint=model_credential.get('api_base'), openai_api_version=model_credential.get('api_version'), openai_api_type="azure", streaming=True, **optional_params, ) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: try: return super().get_num_tokens_from_messages(messages) except Exception as e: tokenizer = TokenizerManage.get_tokenizer() return sum([len(tokenizer.encode(get_buffer_string([m]))) for m in messages]) def get_num_tokens(self, text: str) -> int: try: return super().get_num_tokens(text) except Exception as e: tokenizer = TokenizerManage.get_tokenizer() return len(tokenizer.encode(text))