# coding=utf-8 """ @project: maxkb @Author:虎 @file: base_vector.py @date:2023/10/18 19:16 @desc: """ from abc import ABC, abstractmethod from typing import List, Dict from langchain.embeddings import HuggingFaceEmbeddings from common.config.embedding_config import EmbeddingModel from common.util.common import sub_array from embedding.models import SourceType class BaseVectorStore(ABC): vector_exists = False @abstractmethod def vector_is_create(self) -> bool: """ 判断向量库是否创建 :return: 是否创建向量库 """ pass @abstractmethod def vector_create(self): """ 创建 向量库 :return: """ pass def save_pre_handler(self): """ 插入前置处理器 主要是判断向量库是否创建 :return: True """ if not BaseVectorStore.vector_exists: if not self.vector_is_create(): self.vector_create() BaseVectorStore.vector_exists = True return True def save(self, text, source_type: SourceType, dataset_id: str, document_id: str, paragraph_id: str, source_id: str, is_active: bool, star_num: int, trample_num: int, embedding=None): """ 插入向量数据 :param source_id: 资源id :param dataset_id: 数据集id :param text: 文本 :param source_type: 资源类型 :param document_id: 文档id :param is_active: 是否禁用 :param embedding: 向量化处理器 :param paragraph_id 段落id :param star_num 点赞数量 :param trample_num 点踩数量 :return: bool """ if embedding is None: embedding = EmbeddingModel.get_embedding_model() self.save_pre_handler() self._save(text, source_type, dataset_id, document_id, paragraph_id, source_id, is_active, star_num, trample_num, embedding) def batch_save(self, data_list: List[Dict], embedding=None): """ 批量插入 :param data_list: 数据列表 :param embedding: 向量化处理器 :return: bool """ if embedding is None: embedding = EmbeddingModel.get_embedding_model() self.save_pre_handler() result = sub_array(data_list) for child_array in result: self._batch_save(child_array, embedding) return True @abstractmethod def _save(self, text, source_type: SourceType, dataset_id: str, document_id: str, paragraph_id: str, source_id: str, is_active: bool, star_num: int, trample_num: int, embedding: HuggingFaceEmbeddings): pass @abstractmethod def _batch_save(self, text_list: List[Dict], embedding: HuggingFaceEmbeddings): pass @abstractmethod def search(self, query_text, dataset_id_list: list[str], exclude_document_id_list: list[str], exclude_id_list: list[str], is_active: bool, embedding: HuggingFaceEmbeddings): pass @abstractmethod def update_by_paragraph_id(self, paragraph_id: str, instance: Dict): pass @abstractmethod def update_by_source_id(self, source_id: str, instance: Dict): pass @abstractmethod def delete_by_dataset_id(self, dataset_id: str): pass @abstractmethod def delete_by_document_id(self, document_id: str): pass @abstractmethod def delete_by_source_id(self, source_id: str, source_type: str): pass @abstractmethod def delete_by_paragraph_id(self, paragraph_id: str): pass