Compare commits

..

2 Commits
main ... v1.5.1

Author SHA1 Message Date
shaohuzhang1 30b1bdfe5e fix: 修复openai计算token错误
Some checks failed
sync2gitee / repo-sync (push) Has been cancelled
Typos Check / Spell Check with Typos (push) Has been cancelled
(cherry picked from commit 3d1b3ea8d5)
2024-08-29 17:24:00 +08:00
CaptainB d1e9081a43 ci: 增加辅助pip
(cherry picked from commit b0931c8612)
2024-08-29 17:23:49 +08:00
966 changed files with 11097 additions and 84201 deletions

View File

@ -1,50 +1,61 @@
name: 'Bug Report'
description: 'Report an Bug'
title: "[Bug] "
assignees: zyyfit
name: BUG 提交
description: 提交产品缺陷帮助我们更好的改进
title: "[BUG]"
labels: "类型: 缺陷"
assignees: baixin513
body:
- type: markdown
id: contacts_title
attributes:
value: "## Contact Information"
value: "## 联系方式"
- type: input
id: contacts
validations:
required: false
attributes:
label: "Contact Information"
description: "The ways to quickly contact you: WeChat group number and nickname, email, etc."
label: "联系方式"
description: "可以快速联系到您的方式:交流群号及昵称、邮箱等"
- type: markdown
id: environment
attributes:
value: "## Environment Information"
value: "## 环境信息"
- type: input
id: version
validations:
required: true
attributes:
label: "MaxKB Version"
description: "Log in to the MaxKB Web Console and check the current version on the `About` page in the top right corner."
label: "MaxKB 版本"
description: "登录 MaxKB Web 控制台,在右上角关于页面查看当前版本。"
- type: markdown
id: details
attributes:
value: "## Detailed information"
value: "## 详细信息"
- type: textarea
id: what-happened
attributes:
label: "Problem Description"
description: "Briefly describe the issue youve encountered."
label: "问题描述"
description: "简要描述您碰到的问题"
validations:
required: true
- type: textarea
id: how-happened
attributes:
label: "Steps to Reproduce"
description: "How can this issue be reproduced."
label: "重现步骤"
description: "如果操作可以重现该问题"
validations:
required: true
- type: textarea
id: expect
attributes:
label: "The expected correct result"
label: "期待的正确结果"
- type: textarea
id: logs
attributes:
label: "Related log output"
description: "Please paste any relevant log output here. It will automatically be formatted as code, so no backticks are necessary."
label: "相关日志输出"
description: "请复制并粘贴任何相关的日志输出。 这将自动格式化为代码,因此无需反引号。"
render: shell
- type: textarea
id: additional-information
attributes:
label: "Additional Information"
description: "If you have any additional information to provide, you can include it here (screenshots, videos, etc., are welcome)."
label: "附加信息"
description: "如果你还有其他需要提供的信息,可以在这里填写(可以提供截图、视频等)。"

View File

@ -1,5 +1,5 @@
blank_issues_enabled: false
contact_links:
- name: Questions & Discussions
url: https://github.com/1Panel-dev/MaxKB/discussions
about: Raise questions about the installation, deployment, use and other aspects of the project.
- name: 对 MaxKB 项目有其他问题
url: https://bbs.fit2cloud.com/c/mk/11
about: 如果你对 MaxKB 有其他想要提问的,我们欢迎到我们的官方社区进行提问。

View File

@ -1,29 +1,36 @@
name: 'Feature Request'
description: 'Suggest an idea'
title: '[Feature] '
name: 需求建议
description: 提出针对本项目的想法和建议
title: "[FEATURE]"
labels: enhancement
assignees: baixin513
body:
- type: markdown
id: environment
attributes:
value: "## Environment Information"
value: "## 环境信息"
- type: input
id: version
validations:
required: true
attributes:
label: "MaxKB Version"
description: "Log in to the MaxKB Web Console and check the current version on the `About` page in the top right corner."
label: "MaxKB 版本"
description: "登录 MaxKB Web 控制台,在右上角关于页面查看当前版本。"
- type: markdown
id: details
attributes:
value: "## Detailed information"
value: "## 详细信息"
- type: textarea
id: description
attributes:
label: "Please describe your needs or suggestions for improvements"
label: "请描述您的需求或者改进建议"
validations:
required: true
- type: textarea
id: solution
attributes:
label: "Please describe the solution you suggest"
label: "请描述你建议的实现方案"
- type: textarea
id: additional-information
attributes:
label: "Additional Information"
description: "If you have any additional information to provide, you can include it here (screenshots, videos, etc., are welcome)."
label: "附加信息"
description: "如果你还有其他需要提供的信息,可以在这里填写(可以提供截图、视频等)。"

View File

@ -1,17 +0,0 @@
version: 2
updates:
- package-ecosystem: "pip"
directory: "/"
schedule:
interval: "weekly"
timezone: "Asia/Shanghai"
day: "friday"
target-branch: "v2"
groups:
python-dependencies:
patterns:
- "*"
# ignore:
# - dependency-name: "pymupdf"
# versions: ["*"]

View File

@ -14,7 +14,7 @@ on:
- linux/amd64,linux/arm64
jobs:
build-and-push-python-pg-to-ghcr:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- name: Check Disk Space
run: df -h
@ -39,7 +39,7 @@ jobs:
run: |
DOCKER_IMAGE=ghcr.io/1panel-dev/maxkb-python-pg
DOCKER_PLATFORMS=${{ github.event.inputs.architecture }}
TAG_NAME=python3.11-pg15.8
TAG_NAME=python3.11-pg15.6
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME} --tag ${DOCKER_IMAGE}:latest"
echo ::set-output name=docker_image::${DOCKER_IMAGE}
echo ::set-output name=version::${TAG_NAME}
@ -50,9 +50,6 @@ jobs:
${DOCKER_IMAGE_TAGS} .
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
with:
# Until https://github.com/tonistiigi/binfmt/issues/215
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to GitHub Container Registry

View File

@ -19,7 +19,7 @@ on:
jobs:
build-and-push-vector-model-to-ghcr:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- name: Check Disk Space
run: df -h
@ -55,9 +55,6 @@ jobs:
${DOCKER_IMAGE_TAGS} .
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
with:
# Until https://github.com/tonistiigi/binfmt/issues/215
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to GitHub Container Registry

View File

@ -1,19 +1,12 @@
name: build-and-push
run-name: 构建镜像并推送仓库 ${{ github.event.inputs.dockerImageTag }} (${{ github.event.inputs.registry }})
on:
workflow_dispatch:
inputs:
dockerImageTag:
description: 'Image Tag'
default: 'v1.10.7-dev'
description: 'Docker Image Tag'
default: 'v1.1.0-dev'
required: true
dockerImageTagWithLatest:
description: '是否发布latest tag正式发版时选择测试版本切勿选择'
default: false
required: true
type: boolean
architecture:
description: 'Architecture'
required: true
@ -26,11 +19,11 @@ on:
registry:
description: 'Push To Registry'
required: true
default: 'fit2cloud-registry'
default: 'dockerhub'
type: choice
options:
- fit2cloud-registry
- dockerhub
- fit2cloud-registry
- dockerhub, fit2cloud-registry
jobs:
@ -59,17 +52,16 @@ jobs:
- name: Prepare
id: prepare
run: |
DOCKER_IMAGE=${{ secrets.FIT2CLOUD_REGISTRY_HOST }}/maxkb/maxkb
DOCKER_IMAGE=registry-hkproxy.fit2cloud.com/maxkb/maxkb
DOCKER_PLATFORMS=${{ github.event.inputs.architecture }}
TAG_NAME=${{ github.event.inputs.dockerImageTag }}
TAG_NAME_WITH_LATEST=${{ github.event.inputs.dockerImageTagWithLatest }}
if [[ ${TAG_NAME_WITH_LATEST} == 'true' ]]; then
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME} --tag ${DOCKER_IMAGE}:${TAG_NAME%%.*}"
else
if [[ ${TAG_NAME} == *dev* ]]; then
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME}"
else
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME} --tag ${DOCKER_IMAGE}:latest"
fi
echo ::set-output name=buildx_args::--platform ${DOCKER_PLATFORMS} --memory-swap -1 \
--build-arg DOCKER_IMAGE_TAG=${{ github.event.inputs.dockerImageTag }} --build-arg BUILD_AT=$(TZ=Asia/Shanghai date +'%Y-%m-%dT%H:%M') --build-arg GITHUB_COMMIT=`git rev-parse --short HEAD` --no-cache \
echo ::set-output name=buildx_args::--platform ${DOCKER_PLATFORMS} \
--build-arg DOCKER_IMAGE_TAG=${{ github.event.inputs.dockerImageTag }} --build-arg BUILD_AT=$(TZ=Asia/Shanghai date +'%Y-%m-%dT%H:%M') --build-arg GITHUB_COMMIT=${GITHUB_SHA::8} --no-cache \
${DOCKER_IMAGE_TAGS} .
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
@ -84,12 +76,11 @@ jobs:
- name: Login to FIT2CLOUD Registry
uses: docker/login-action@v3
with:
registry: ${{ secrets.FIT2CLOUD_REGISTRY_HOST }}
registry: registry-hkproxy.fit2cloud.com
username: ${{ secrets.FIT2CLOUD_REGISTRY_USERNAME }}
password: ${{ secrets.FIT2CLOUD_REGISTRY_PASSWORD }}
- name: Docker Buildx (build-and-push)
run: |
sudo sync && echo 3 | sudo tee /proc/sys/vm/drop_caches && free -m
docker buildx build --output "type=image,push=true" ${{ steps.prepare.outputs.buildx_args }} -f installer/Dockerfile
build-and-push-to-dockerhub:
@ -119,15 +110,14 @@ jobs:
run: |
DOCKER_IMAGE=1panel/maxkb
DOCKER_PLATFORMS=${{ github.event.inputs.architecture }}
TAG_NAME=${{ github.event.inputs.dockerImageTag }}
TAG_NAME_WITH_LATEST=${{ github.event.inputs.dockerImageTagWithLatest }}
if [[ ${TAG_NAME_WITH_LATEST} == 'true' ]]; then
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME} --tag ${DOCKER_IMAGE}:${TAG_NAME%%.*}"
else
TAG_NAME=${{ github.event.inputs.dockerImageTag }}
if [[ ${TAG_NAME} == *dev* ]]; then
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME}"
else
DOCKER_IMAGE_TAGS="--tag ${DOCKER_IMAGE}:${TAG_NAME} --tag ${DOCKER_IMAGE}:latest"
fi
echo ::set-output name=buildx_args::--platform ${DOCKER_PLATFORMS} --memory-swap -1 \
--build-arg DOCKER_IMAGE_TAG=${{ github.event.inputs.dockerImageTag }} --build-arg BUILD_AT=$(TZ=Asia/Shanghai date +'%Y-%m-%dT%H:%M') --build-arg GITHUB_COMMIT=`git rev-parse --short HEAD` --no-cache \
echo ::set-output name=buildx_args::--platform ${DOCKER_PLATFORMS} \
--build-arg DOCKER_IMAGE_TAG=${{ github.event.inputs.dockerImageTag }} --build-arg BUILD_AT=$(TZ=Asia/Shanghai date +'%Y-%m-%dT%H:%M') --build-arg GITHUB_COMMIT=${GITHUB_SHA::8} --no-cache \
${DOCKER_IMAGE_TAGS} .
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
@ -146,5 +136,4 @@ jobs:
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Docker Buildx (build-and-push)
run: |
sudo sync && echo 3 | sudo tee /proc/sys/vm/drop_caches && free -m
docker buildx build --output "type=image,push=true" ${{ steps.prepare.outputs.buildx_args }} -f installer/Dockerfile

View File

@ -1,14 +0,0 @@
name: Issue Translator
on:
issue_comment:
types: [created]
issues:
types: [opened]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: usthe/issues-translate-action@v2.7
with:
IS_MODIFY_TITLE: true
BOT_GITHUB_TOKEN: ${{ secrets.FIT2CLOUDRD_LLM_CODE_REVIEW_TOKEN }}

View File

@ -1,28 +0,0 @@
name: LLM Code Review
permissions:
contents: read
pull-requests: write
on:
pull_request:
types: [opened, reopened, synchronize]
jobs:
llm-code-review:
runs-on: ubuntu-latest
steps:
- uses: fit2cloud/LLM-CodeReview-Action@main
env:
GITHUB_TOKEN: ${{ secrets.FIT2CLOUDRD_LLM_CODE_REVIEW_TOKEN }}
OPENAI_API_KEY: ${{ secrets.ALIYUN_LLM_API_KEY }}
LANGUAGE: English
OPENAI_API_ENDPOINT: https://dashscope.aliyuncs.com/compatible-mode/v1
MODEL: qwen2.5-coder-3b-instruct
PROMPT: "Please check the following code for any irregularities, potential issues, or optimization suggestions, and provide your answers in English."
top_p: 1
temperature: 1
# max_tokens: 10000
MAX_PATCH_LENGTH: 10000
IGNORE_PATTERNS: "/node_modules,*.md,/dist,/.github"
FILE_PATTERNS: "*.java,*.go,*.py,*.vue,*.ts,*.js,*.css,*.scss,*.html"

View File

@ -1,10 +1,5 @@
name: Typos Check
on:
push:
branches:
- main
pull_request:
types: [opened, synchronize, reopened]
on: [push, pull_request]
jobs:
run:

4
.gitignore vendored
View File

@ -178,10 +178,6 @@ ui/node_modules
ui/dist
apps/static
models/
apps/xpack
!apps/**/models/
data
.dev
poetry.lock
apps/setting/models_provider/impl/*/icon/
tmp/

View File

@ -1,4 +0,0 @@
[files]
extend-exclude = [
'apps/setting/models_provider/impl/*/icon/*'
]

134
README.md
View File

@ -1,126 +1,78 @@
<p align="center"><img src= "https://github.com/1Panel-dev/maxkb/assets/52996290/c0694996-0eed-40d8-b369-322bf2a380bf" alt="MaxKB" width="300" /></p>
<h3 align="center">Open-source platform for building enterprise-grade agents</h3>
<h3 align="center">强大易用的企业级智能体平台</h3>
<h3 align="center">基于 LLM 大语言模型的知识库问答系统</h3>
<p align="center"><a href="https://trendshift.io/repositories/9113" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9113" alt="1Panel-dev%2FMaxKB | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a></p>
<p align="center">
<a href="https://www.gnu.org/licenses/gpl-3.0.html#license-text"><img src="https://img.shields.io/github/license/1Panel-dev/maxkb?color=%231890FF" alt="License: GPL v3"></a>
<a href="https://app.codacy.com/gh/1Panel-dev/maxkb?utm_source=github.com&utm_medium=referral&utm_content=1Panel-dev/maxkb&utm_campaign=Badge_Grade_Dashboard"><img src="https://app.codacy.com/project/badge/Grade/da67574fd82b473992781d1386b937ef" alt="Codacy"></a>
<a href="https://github.com/1Panel-dev/maxkb/releases/latest"><img src="https://img.shields.io/github/v/release/1Panel-dev/maxkb" alt="Latest release"></a>
<a href="https://github.com/1Panel-dev/maxkb"><img src="https://img.shields.io/github/stars/1Panel-dev/maxkb?color=%231890FF&style=flat-square" alt="Stars"></a>
<a href="https://hub.docker.com/r/1panel/maxkb"><img src="https://img.shields.io/docker/pulls/1panel/maxkb?label=downloads" alt="Download"></a><br/>
[<a href="/README_CN.md">中文(简体)</a>] | [<a href="/README.md">English</a>]
<a href="https://hub.docker.com/r/1panel/maxkb"><img src="https://img.shields.io/docker/pulls/1panel/maxkb?label=downloads" alt="Download"></a>
</p>
<hr/>
MaxKB = Max Knowledge Brain, it is an open-source platform for building enterprise-grade agents. MaxKB integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities. MaxKB is widely applied in scenarios such as intelligent customer service, corporate internal knowledge bases, academic research, and education.
MaxKB = Max Knowledge Base是一款基于 LLM 大语言模型的开源知识库问答系统,广泛应用于企业内部知识库、客户服务、学术研究与教育等场景。
- **RAG Pipeline**: Supports direct uploading of documents / automatic crawling of online documents, with features for automatic text splitting, vectorization. This effectively reduces hallucinations in large models, providing a superior smart Q&A interaction experience.
- **Agentic Workflow**: Equipped with a powerful workflow engine, function library and MCP tool-use, enabling the orchestration of AI processes to meet the needs of complex business scenarios.
- **Seamless Integration**: Facilitates zero-coding rapid integration into third-party business systems, quickly equipping existing systems with intelligent Q&A capabilities to enhance user satisfaction.
- **Model-Agnostic**: Supports various large models, including private models (such as DeepSeek, Llama, Qwen, etc.) and public models (like OpenAI, Claude, Gemini, etc.).
- **Multi Modal**: Native support for input and output text, image, audio and video.
- **开箱即用**支持直接上传文档、自动爬取在线文档支持文本自动拆分、向量化、RAG检索增强生成智能问答交互体验好
- **模型中立**支持对接各种大语言模型包括本地私有大模型Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 智谱 AI / 百度千帆 / Kimi / DeepSeek 等和国外公共大模型OpenAI / Azure OpenAI / Gemini 等);
- **灵活编排**:内置强大的工作流引擎,支持编排 AI 工作过程,满足复杂业务场景下的需求;
- **无缝嵌入**:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度。
## Quick start
## 快速开始
Execute the script below to start a MaxKB container using Docker:
```
docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb
```bash
docker run -d --name=maxkb --restart=always -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages 1panel/maxkb
# 用户名: admin
# 密码: MaxKB@123..
```
Access MaxKB web interface at `http://your_server_ip:8080` with default admin credentials:
- 你也可以通过 [1Panel 应用商店](https://apps.fit2cloud.com/1panel) 快速部署 MaxKB + Ollama + Llama 330 分钟内即可上线基于本地大模型的知识库问答系统,并嵌入到第三方业务系统中;
- 如果是内网环境,推荐使用 [离线安装包](https://community.fit2cloud.com/#/products/maxkb/downloads) 进行安装部署;
- 你也可以在线体验:[DataEase 小助手](https://dataease.io/docs/v2/),它是基于 MaxKB 搭建的智能问答系统,已经嵌入到 DataEase 产品及在线文档中;
- MaxKB 产品版本分为社区版和专业版,详情请参见:[MaxKB 产品版本对比](https://maxkb.cn/pricing.html)。
- username: admin
- password: MaxKB@123..
如你有更多问题,可以查看使用手册,或者通过论坛与我们交流。如果你需要搭建技术博客或者知识库,推荐使用 [Halo 开源建站工具](https://github.com/halo-dev/halo/),你可以体验下飞致云官方的 [技术博客](https://blog.fit2cloud.com/) 和 [知识库](https://kb.fit2cloud.com) 案例。
中国用户如遇到 Docker 镜像 Pull 失败问题,请参照该 [离线安装文档](https://maxkb.cn/docs/installation/offline_installtion/) 进行安装。
- [使用手册](https://maxkb.cn/docs/)
- [演示视频](https://www.bilibili.com/video/BV1BE421M7YM/)
- [论坛求助](https://bbs.fit2cloud.com/c/mk/11)
- 技术交流群
## Screenshots
<image height="150px" width="150px" src="https://github.com/1Panel-dev/MaxKB/assets/52996290/a083d214-02be-4178-a1db-4f428124153a"/>
## UI 展示
<table style="border-collapse: collapse; border: 1px solid black;">
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/overview.png" alt="MaxKB Demo1" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/screenshot-models.png" alt="MaxKB Demo2" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/d87395fa-a8d7-401c-82bf-c6e475d10ae9" alt="MaxKB Demo1" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/47c35ee4-3a3b-4bd4-9f4f-ee20788b2b9a" alt="MaxKB Demo2" /></td>
</tr>
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/screenshot-knowledge.png" alt="MaxKB Demo3" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/screenshot-function.png" alt="MaxKB Demo4" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/1c0c5e32-6194-47f9-bc32-487996349d9c" alt="MaxKB Demo3" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/f32f5fe9-a769-488c-ae0e-783bc2b89b3e" alt="MaxKB Demo4" /></td>
</tr>
</table>
## Technical stack
## 技术栈
- Frontend[Vue.js](https://vuejs.org/)
- Backend[Python / Django](https://www.djangoproject.com/)
- LLM Framework[LangChain](https://www.langchain.com/)
- Database[PostgreSQL + pgvector](https://www.postgresql.org/)
- 前端:[Vue.js](https://cn.vuejs.org/)
- 后端:[Python / Django](https://www.djangoproject.com/)
- LangChain[LangChain](https://www.langchain.com/)
- 向量数据库:[PostgreSQL / pgvector](https://www.postgresql.org/)
- 大模型:各种本地私有或者公共大模型
## Feature Comparison
## 飞致云的其他明星项目
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
<th align="center">LangChain</th>
<th align="center">Dify.AI</th>
<th align="center">Flowise</th>
<th align="center">MaxKB <br>Built upon LangChain</th>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">SSO/Access control</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">✅ (Pro)</td>
</tr>
<tr>
<td align="center">On-premise Deployment</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=1Panel-dev/MaxKB&type=Date)](https://star-history.com/#1Panel-dev/MaxKB&Date)
- [1Panel](https://github.com/1panel-dev/1panel/) - 现代化、开源的 Linux 服务器运维管理面板
- [JumpServer](https://github.com/jumpserver/jumpserver/) - 广受欢迎的开源堡垒机
- [DataEase](https://github.com/dataease/dataease/) - 人人可用的开源数据可视化分析工具
- [MeterSphere](https://github.com/metersphere/metersphere/) - 新一代的开源持续测试工具
- [Halo](https://github.com/halo-dev/halo/) - 强大易用的开源建站工具
## License
Copyright (c) 2014-2024 飞致云 FIT2CLOUD, All rights reserved.
Licensed under The GNU General Public License version 3 (GPLv3) (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
<https://www.gnu.org/licenses/gpl-3.0.html>

View File

@ -1,89 +0,0 @@
<p align="center"><img src= "https://github.com/1Panel-dev/maxkb/assets/52996290/c0694996-0eed-40d8-b369-322bf2a380bf" alt="MaxKB" width="300" /></p>
<h3 align="center">强大易用的企业级智能体平台</h3>
<p align="center">
<a href="https://trendshift.io/repositories/9113" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9113" alt="1Panel-dev%2FMaxKB | Trendshift" style="width: 250px; height: auto;" /></a>
</p>
<p align="center">
<a href="README_EN.md"><img src="https://img.shields.io/badge/English_README-blue" alt="English README"></a>
<a href="https://www.gnu.org/licenses/gpl-3.0.html#license-text"><img src="https://img.shields.io/github/license/1Panel-dev/maxkb?color=%231890FF" alt="License: GPL v3"></a>
<a href="https://github.com/1Panel-dev/maxkb/releases/latest"><img src="https://img.shields.io/github/v/release/1Panel-dev/maxkb" alt="Latest release"></a>
<a href="https://github.com/1Panel-dev/maxkb"><img src="https://img.shields.io/github/stars/1Panel-dev/maxkb?style=flat-square" alt="Stars"></a>
<a href="https://hub.docker.com/r/1panel/maxkb"><img src="https://img.shields.io/docker/pulls/1panel/maxkb?label=downloads" alt="Download"></a>
<a href="https://gitee.com/fit2cloud-feizhiyun/MaxKB"><img src="https://gitee.com/fit2cloud-feizhiyun/MaxKB/badge/star.svg?theme=gvp" alt="Gitee Stars"></a>
<a href="https://gitcode.com/feizhiyun/MaxKB"><img src="https://gitcode.com/feizhiyun/MaxKB/star/badge.svg" alt="GitCode Stars"></a>
</p>
<hr/>
MaxKB = Max Knowledge Brain是一款强大易用的企业级智能体平台支持 RAG 检索增强生成、工作流编排、MCP 工具调用能力。MaxKB 支持对接各种主流大语言模型,广泛应用于智能客服、企业内部知识库问答、员工助手、学术研究与教育等场景。
- **RAG 检索增强生成**:高效搭建本地 AI 知识库,支持直接上传文档 / 自动爬取在线文档,支持文本自动拆分、向量化,有效减少大模型幻觉,提升问答效果;
- **灵活编排**:内置强大的工作流引擎、函数库和 MCP 工具调用能力,支持编排 AI 工作过程,满足复杂业务场景下的需求;
- **无缝嵌入**:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度;
- **模型中立**支持对接各种大模型包括本地私有大模型DeepSeek R1 / Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 腾讯混元 / 字节豆包 / 百度千帆 / 智谱 AI / Kimi 等和国外公共大模型OpenAI / Claude / Gemini 等)。
MaxKB 三分钟视频介绍https://www.bilibili.com/video/BV18JypYeEkj/
## 快速开始
```
# Linux 机器
docker run -d --name=maxkb --restart=always -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb
# Windows 机器
docker run -d --name=maxkb --restart=always -p 8080:8080 -v C:/maxkb:/var/lib/postgresql/data -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb
# 用户名: admin
# 密码: MaxKB@123..
```
- 你也可以通过 [1Panel 应用商店](https://apps.fit2cloud.com/1panel) 快速部署 MaxKB
- 如果是内网环境,推荐使用 [离线安装包](https://community.fit2cloud.com/#/products/maxkb/downloads) 进行安装部署;
- MaxKB 产品版本分为社区版和专业版,详情请参见:[MaxKB 产品版本对比](https://maxkb.cn/pricing.html)
- 如果您需要向团队介绍 MaxKB可以使用这个 [官方 PPT 材料](https://maxkb.cn/download/introduce-maxkb_202503.pdf)。
如你有更多问题,可以查看使用手册,或者通过论坛与我们交流。
- [案例展示](USE-CASES.md)
- [使用手册](https://maxkb.cn/docs/)
- [论坛求助](https://bbs.fit2cloud.com/c/mk/11)
- 技术交流群
<image height="150px" width="150px" src="https://github.com/1Panel-dev/MaxKB/assets/52996290/a083d214-02be-4178-a1db-4f428124153a"/>
## UI 展示
<table style="border-collapse: collapse; border: 1px solid black;">
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/d87395fa-a8d7-401c-82bf-c6e475d10ae9" alt="MaxKB Demo1" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/47c35ee4-3a3b-4bd4-9f4f-ee20788b2b9a" alt="MaxKB Demo2" /></td>
</tr>
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/user-attachments/assets/9a1043cb-fa62-4f71-b9a3-0b46fa59a70e" alt="MaxKB Demo3" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/user-attachments/assets/3407ce9a-779c-4eb4-858e-9441a2ddc664" alt="MaxKB Demo4" /></td>
</tr>
</table>
## 技术栈
- 前端:[Vue.js](https://cn.vuejs.org/)
- 后端:[Python / Django](https://www.djangoproject.com/)
- LangChain[LangChain](https://www.langchain.com/)
- 向量数据库:[PostgreSQL / pgvector](https://www.postgresql.org/)
## 飞致云的其他明星项目
- [1Panel](https://github.com/1panel-dev/1panel/) - 现代化、开源的 Linux 服务器运维管理面板
- [JumpServer](https://github.com/jumpserver/jumpserver/) - 广受欢迎的开源堡垒机
- [DataEase](https://github.com/dataease/dataease/) - 人人可用的开源数据可视化分析工具
- [MeterSphere](https://github.com/metersphere/metersphere/) - 新一代的开源持续测试工具
- [Halo](https://github.com/halo-dev/halo/) - 强大易用的开源建站工具
## License
Copyright (c) 2014-2025 飞致云 FIT2CLOUD, All rights reserved.
Licensed under The GNU General Public License version 3 (GPLv3) (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
<https://www.gnu.org/licenses/gpl-3.0.html>
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

View File

@ -1,39 +0,0 @@
<h3 align="center">MaxKB 应用案例,持续更新中...</h3>
------------------------------
- [MaxKB 应用案例:中国农业大学-小鹉哥](https://mp.weixin.qq.com/s/4g_gySMBQZCJ9OZ-yBkmvw)
- [MaxKB 应用案例:东北财经大学-小银杏](https://mp.weixin.qq.com/s/3BoxkY7EMomMmmvFYxvDIA)
- [MaxKB 应用案例:中铁水务](https://mp.weixin.qq.com/s/voNAddbK2CJOrJJs1ewZ8g)
- [MaxKB 应用案例:解放军总医院](https://mp.weixin.qq.com/s/ETrZC-vrA4Aap0eF-15EeQ)
- [MaxKB 应用案例:无锡市数据局](https://mp.weixin.qq.com/s/enfUFLevvL_La74PQ0kIXw)
- [MaxKB 应用案例:中核西仪研究院-西仪睿答](https://mp.weixin.qq.com/s/CbKr4mev8qahKLAtV6Dxdg)
- [MaxKB 应用案例:南京中医药大学](https://mp.weixin.qq.com/s/WUmAKYbZjp3272HIecpRFA)
- [MaxKB 应用案例:西北电力设计院-AI数字助理Memex](https://mp.weixin.qq.com/s/ezHFdB7C7AVL9MTtDwYGSA)
- [MaxKB 应用案例:西安国际医院中心医院-国医小助](https://mp.weixin.qq.com/s/DSOUvwrQrxbqQxKBilTCFQ)
- [MaxKB 应用案例华莱士智能AI客服助手上线啦](https://www.bilibili.com/video/BV1hQtVeXEBL)
- [MaxKB 应用案例:把医疗行业知识转化为知识库问答助手!](https://www.bilibili.com/video/BV157wme9EgB)
- [MaxKB 应用案例会展AI智能客服体验](https://www.bilibili.com/video/BV1J7BqY6EKA)
- [MaxKB 应用案例孩子要上幼儿园了AI 智能助手择校好帮手](https://www.bilibili.com/video/BV1wKrhYvEer)
- [MaxKB 应用案例产品使用指南AI助手新手小白也能轻松搞定](https://www.bilibili.com/video/BV1Yz6gYtEqX)
- [MaxKB 应用案例生物医药AI客服智能体验!](https://www.bilibili.com/video/BV13JzvYsE3e)
- [MaxKB 应用案例高校行政管理AI小助手](https://www.bilibili.com/video/BV1yvBMYvEdy)
- [MaxKB 应用案例:岳阳市人民医院-OA小助手](https://mp.weixin.qq.com/s/O94Qo3UH-MiUtDdWCVg8sQ)
- [MaxKB 应用案例:常熟市第一人民医院](https://mp.weixin.qq.com/s/s5XXGTR3_MUo41NbJ8WzZQ)
- [MaxKB 应用案例:华北水利水电大学](https://mp.weixin.qq.com/s/PoOFAcMCr9qJdvSj8c08qg)
- [MaxKB 应用案例:唐山海事局-“小海”AI语音助手](https://news.qq.com/rain/a/20250223A030BE00)
- [MaxKB 应用案例:湖南汉寿政务](http://hsds.hsdj.gov.cn:19999/ui/chat/a2c976736739aadc)
- [MaxKB 应用案例:广州市妇女儿童医疗中心-AI医疗数据分类分级小助手](https://mp.weixin.qq.com/s/YHUMkUOAaUomBV8bswpK3g)
- [MaxKB 应用案例:苏州热工研究院有限公司-维修大纲评估质量自查AI小助手](https://mp.weixin.qq.com/s/Ts5FQdnv7Tu9Jp7bvofCVA)
- [MaxKB 应用案例:国核自仪系统工程有限公司-NuCON AI帮](https://mp.weixin.qq.com/s/HNPc7u5xVfGLJr8IQz3vjQ)
- [MaxKB 应用案例深圳通开启Deep Seek智能应用新篇章](https://mp.weixin.qq.com/s/SILN0GSescH9LyeQqYP0VQ)
- [MaxKB 应用案例南通智慧出行领跑长三角首款接入DeepSeek的"畅行南通"APP上线AI新场景](https://mp.weixin.qq.com/s/WEC9UQ6msY0VS8LhTZh-Ew)
- [MaxKB 应用案例:中船动力人工智能"智慧动力云助手"及首批数字员工正式上线](https://mp.weixin.qq.com/s/OGcEkjh9DzGO1Tkc9nr7qg)
- [MaxKB 应用案例AI+矿山DeepSeek助力绿色智慧矿山智慧“升级”](https://mp.weixin.qq.com/s/SZstxTvVoLZg0ECbZbfpIA)
- [MaxKB 应用案例DeepSeek落地弘盛铜业国产大模型点亮"黑灯工厂"新引擎](https://mp.weixin.qq.com/s/Eczdx574MS5RMF7WfHN7_A)
- [MaxKB 应用案例:拥抱智能时代!中国五矿以 “AI+”赋能企业发展](https://mp.weixin.qq.com/s/D5vBtlX2E81pWE3_2OgWSw)
- [MaxKB 应用案例DeepSeek赋能中冶武勘AI智能体](https://mp.weixin.qq.com/s/8m0vxGcWXNdZazziQrLyxg)
- [MaxKB 应用案例重磅陕西广电网络“秦岭云”平台实现DeepSeek本地化部署](https://mp.weixin.qq.com/s/ZKmEU_wWShK1YDomKJHQeA)
- [MaxKB 应用案例粤海集团完成DeepSeek私有化部署助力集团智能化管理](https://mp.weixin.qq.com/s/2JbVp0-kr9Hfp-0whH4cvg)
- [MaxKB 应用案例建筑材料工业信息中心完成DeepSeek本地化部署推动行业数智化转型新发展](https://mp.weixin.qq.com/s/HThGSnND3qDF8ySEqiM4jw)
- [MaxKB 应用案例一起DeepSeek福建设计以AI大模型开启新篇章](https://mp.weixin.qq.com/s/m67e-H7iQBg3d24NM82UjA)

View File

@ -19,7 +19,7 @@ class ParagraphPipelineModel:
def __init__(self, _id: str, document_id: str, dataset_id: str, content: str, title: str, status: str,
is_active: bool, comprehensive_score: float, similarity: float, dataset_name: str, document_name: str,
hit_handling_method: str, directly_return_similarity: float, meta: dict = None):
hit_handling_method: str, directly_return_similarity: float):
self.id = _id
self.document_id = document_id
self.dataset_id = dataset_id
@ -33,7 +33,6 @@ class ParagraphPipelineModel:
self.document_name = document_name
self.hit_handling_method = hit_handling_method
self.directly_return_similarity = directly_return_similarity
self.meta = meta
def to_dict(self):
return {
@ -47,8 +46,7 @@ class ParagraphPipelineModel:
'comprehensive_score': self.comprehensive_score,
'similarity': self.similarity,
'dataset_name': self.dataset_name,
'document_name': self.document_name,
'meta': self.meta,
'document_name': self.document_name
}
class builder:
@ -60,7 +58,6 @@ class ParagraphPipelineModel:
self.dataset_name = None
self.hit_handling_method = None
self.directly_return_similarity = 0.9
self.meta = {}
def add_paragraph(self, paragraph):
if isinstance(paragraph, Paragraph):
@ -100,10 +97,6 @@ class ParagraphPipelineModel:
self.similarity = similarity
return self
def add_meta(self, meta: dict):
self.meta = meta
return self
def build(self):
return ParagraphPipelineModel(str(self.paragraph.get('id')), str(self.paragraph.get('document_id')),
str(self.paragraph.get('dataset_id')),
@ -111,8 +104,7 @@ class ParagraphPipelineModel:
self.paragraph.get('status'),
self.paragraph.get('is_active'),
self.comprehensive_score, self.similarity, self.dataset_name,
self.document_name, self.hit_handling_method, self.directly_return_similarity,
self.meta)
self.document_name, self.hit_handling_method, self.directly_return_similarity)
class IBaseChatPipelineStep:

View File

@ -11,18 +11,14 @@ from functools import reduce
from typing import List, Type, Dict
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep
from common.handle.base_to_response import BaseToResponse
from common.handle.impl.response.system_to_response import SystemToResponse
class PipelineManage:
def __init__(self, step_list: List[Type[IBaseChatPipelineStep]],
base_to_response: BaseToResponse = SystemToResponse()):
def __init__(self, step_list: List[Type[IBaseChatPipelineStep]]):
# 步骤执行器
self.step_list = [step() for step in step_list]
# 上下文
self.context = {'message_tokens': 0, 'answer_tokens': 0}
self.base_to_response = base_to_response
def run(self, context: Dict = None):
self.context['start_time'] = time.time()
@ -37,21 +33,13 @@ class PipelineManage:
filter(lambda r: r is not None,
[row.get_details(self) for row in self.step_list])], {})
def get_base_to_response(self):
return self.base_to_response
class builder:
def __init__(self):
self.step_list: List[Type[IBaseChatPipelineStep]] = []
self.base_to_response = SystemToResponse()
def append_step(self, step: Type[IBaseChatPipelineStep]):
self.step_list.append(step)
return self
def add_base_to_response(self, base_to_response: BaseToResponse):
self.base_to_response = base_to_response
return self
def build(self):
return PipelineManage(step_list=self.step_list, base_to_response=self.base_to_response)
return PipelineManage(step_list=self.step_list)

View File

@ -9,7 +9,6 @@
from abc import abstractmethod
from typing import Type, List
from django.utils.translation import gettext_lazy as _
from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseMessage
from rest_framework import serializers
@ -24,7 +23,7 @@ from common.util.field_message import ErrMessage
class ModelField(serializers.Field):
def to_internal_value(self, data):
if not isinstance(data, BaseChatModel):
self.fail(_('Model type error'), value=data)
self.fail('模型类型错误', value=data)
return data
def to_representation(self, value):
@ -34,7 +33,7 @@ class ModelField(serializers.Field):
class MessageField(serializers.Field):
def to_internal_value(self, data):
if not isinstance(data, BaseMessage):
self.fail(_('Message type error'), value=data)
self.fail('message类型错误', value=data)
return data
def to_representation(self, value):
@ -53,42 +52,37 @@ class IChatStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 对话列表
message_list = serializers.ListField(required=True, child=MessageField(required=True),
error_messages=ErrMessage.list(_("Conversation list")))
model_id = serializers.UUIDField(required=False, allow_null=True, error_messages=ErrMessage.uuid(_("Model id")))
error_messages=ErrMessage.list("对话列表"))
model_id = serializers.UUIDField(required=False, allow_null=True, error_messages=ErrMessage.uuid("模型id"))
# 段落列表
paragraph_list = serializers.ListField(error_messages=ErrMessage.list(_("Paragraph List")))
paragraph_list = serializers.ListField(error_messages=ErrMessage.list("段落列表"))
# 对话id
chat_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("Conversation ID")))
chat_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("对话id"))
# 用户问题
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.uuid(_("User Questions")))
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.uuid("用户问题"))
# 后置处理器
post_response_handler = InstanceField(model_type=PostResponseHandler,
error_messages=ErrMessage.base(_("Post-processor")))
error_messages=ErrMessage.base("用户问题"))
# 补全问题
padding_problem_text = serializers.CharField(required=False,
error_messages=ErrMessage.base(_("Completion Question")))
padding_problem_text = serializers.CharField(required=False, error_messages=ErrMessage.base("补全问题"))
# 是否使用流的形式输出
stream = serializers.BooleanField(required=False, error_messages=ErrMessage.base(_("Streaming Output")))
client_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Client id")))
client_type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Client Type")))
stream = serializers.BooleanField(required=False, error_messages=ErrMessage.base("流式输出"))
client_id = serializers.CharField(required=True, error_messages=ErrMessage.char("客户端id"))
client_type = serializers.CharField(required=True, error_messages=ErrMessage.char("客户端类型"))
# 未查询到引用分段
no_references_setting = NoReferencesSetting(required=True,
error_messages=ErrMessage.base(_("No reference segment settings")))
no_references_setting = NoReferencesSetting(required=True, error_messages=ErrMessage.base("无引用分段设置"))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("User ID")))
model_setting = serializers.DictField(required=True, allow_null=True,
error_messages=ErrMessage.dict(_("Model settings")))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("用户id"))
model_params_setting = serializers.DictField(required=False, allow_null=True,
error_messages=ErrMessage.dict(_("Model parameter settings")))
error_messages=ErrMessage.dict("模型参数设置"))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
message_list: List = self.initial_data.get('message_list')
for message in message_list:
if not isinstance(message, BaseMessage):
raise Exception(_("message type error"))
raise Exception("message 类型错误")
def get_step_serializer(self, manage: PipelineManage) -> Type[serializers.Serializer]:
return self.InstanceSerializer
@ -106,5 +100,5 @@ class IChatStep(IBaseChatPipelineStep):
paragraph_list=None,
manage: PipelineManage = None,
padding_problem_text: str = None, stream: bool = True, client_id=None, client_type=None,
no_references_setting=None, model_params_setting=None, model_setting=None, **kwargs):
no_references_setting=None, model_params_setting=None, **kwargs):
pass

View File

@ -6,6 +6,7 @@
@date2024/1/9 18:25
@desc: 对话step Base实现
"""
import json
import logging
import time
import traceback
@ -14,27 +15,23 @@ from typing import List
from django.db.models import QuerySet
from django.http import StreamingHttpResponse
from django.utils.translation import gettext as _
from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseMessage
from langchain.schema.messages import HumanMessage, AIMessage
from langchain_core.messages import AIMessageChunk
from rest_framework import status
from application.chat_pipeline.I_base_chat_pipeline import ParagraphPipelineModel
from application.chat_pipeline.pipeline_manage import PipelineManage
from application.chat_pipeline.step.chat_step.i_chat_step import IChatStep, PostResponseHandler
from application.flow.tools import Reasoning
from application.models.api_key_model import ApplicationPublicAccessClient
from common.constants.authentication_type import AuthenticationType
from common.response import result
from setting.models_provider.tools import get_model_instance_by_model_user_id
def add_access_num(client_id=None, client_type=None, application_id=None):
if client_type == AuthenticationType.APPLICATION_ACCESS_TOKEN.value and application_id is not None:
application_public_access_client = (QuerySet(ApplicationPublicAccessClient).filter(client_id=client_id,
application_id=application_id)
.first())
def add_access_num(client_id=None, client_type=None):
if client_type == AuthenticationType.APPLICATION_ACCESS_TOKEN.value:
application_public_access_client = QuerySet(ApplicationPublicAccessClient).filter(id=client_id).first()
if application_public_access_client is not None:
application_public_access_client.access_num = application_public_access_client.access_num + 1
application_public_access_client.intraday_access_num = application_public_access_client.intraday_access_num + 1
@ -64,54 +61,14 @@ def event_content(response,
problem_text: str,
padding_problem_text: str = None,
client_id=None, client_type=None,
is_ai_chat: bool = None,
model_setting=None):
if model_setting is None:
model_setting = {}
reasoning_content_enable = model_setting.get('reasoning_content_enable', False)
reasoning_content_start = model_setting.get('reasoning_content_start', '<think>')
reasoning_content_end = model_setting.get('reasoning_content_end', '</think>')
reasoning = Reasoning(reasoning_content_start,
reasoning_content_end)
is_ai_chat: bool = None):
all_text = ''
reasoning_content = ''
try:
response_reasoning_content = False
for chunk in response:
reasoning_chunk = reasoning.get_reasoning_content(chunk)
content_chunk = reasoning_chunk.get('content')
if 'reasoning_content' in chunk.additional_kwargs:
response_reasoning_content = True
reasoning_content_chunk = chunk.additional_kwargs.get('reasoning_content', '')
else:
reasoning_content_chunk = reasoning_chunk.get('reasoning_content')
all_text += content_chunk
if reasoning_content_chunk is None:
reasoning_content_chunk = ''
reasoning_content += reasoning_content_chunk
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], content_chunk,
False,
0, 0, {'node_is_end': False,
'view_type': 'many_view',
'node_type': 'ai-chat-node',
'real_node_id': 'ai-chat-node',
'reasoning_content': reasoning_content_chunk if reasoning_content_enable else ''})
reasoning_chunk = reasoning.get_end_reasoning_content()
all_text += reasoning_chunk.get('content')
reasoning_content_chunk = ""
if not response_reasoning_content:
reasoning_content_chunk = reasoning_chunk.get(
'reasoning_content')
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], reasoning_chunk.get('content'),
False,
0, 0, {'node_is_end': False,
'view_type': 'many_view',
'node_type': 'ai-chat-node',
'real_node_id': 'ai-chat-node',
'reasoning_content'
: reasoning_content_chunk if reasoning_content_enable else ''})
all_text += chunk.content
yield 'data: ' + json.dumps({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True,
'content': chunk.content, 'is_end': False}) + "\n\n"
# 获取token
if is_ai_chat:
try:
@ -124,34 +81,20 @@ def event_content(response,
request_token = 0
response_token = 0
write_context(step, manage, request_token, response_token, all_text)
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
all_text, manage, step, padding_problem_text, client_id,
reasoning_content=reasoning_content if reasoning_content_enable else ''
, asker=asker)
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], '', True,
request_token, response_token,
{'node_is_end': True, 'view_type': 'many_view',
'node_type': 'ai-chat-node'})
add_access_num(client_id, client_type, manage.context.get('application_id'))
all_text, manage, step, padding_problem_text, client_id)
yield 'data: ' + json.dumps({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True,
'content': '', 'is_end': True}) + "\n\n"
add_access_num(client_id, client_type)
except Exception as e:
logging.getLogger("max_kb_error").error(f'{str(e)}:{traceback.format_exc()}')
all_text = 'Exception:' + str(e)
all_text = '异常' + str(e)
write_context(step, manage, 0, 0, all_text)
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
all_text, manage, step, padding_problem_text, client_id, reasoning_content='',
asker=asker)
add_access_num(client_id, client_type, manage.context.get('application_id'))
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], all_text,
False,
0, 0, {'node_is_end': False,
'view_type': 'many_view',
'node_type': 'ai-chat-node',
'real_node_id': 'ai-chat-node',
'reasoning_content': ''})
all_text, manage, step, padding_problem_text, client_id)
add_access_num(client_id, client_type)
yield 'data: ' + json.dumps({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True,
'content': all_text, 'is_end': True}) + "\n\n"
class BaseChatStep(IChatStep):
@ -168,20 +111,17 @@ class BaseChatStep(IChatStep):
client_id=None, client_type=None,
no_references_setting=None,
model_params_setting=None,
model_setting=None,
**kwargs):
chat_model = get_model_instance_by_model_user_id(model_id, user_id,
**model_params_setting) if model_id is not None else None
if stream:
return self.execute_stream(message_list, chat_id, problem_text, post_response_handler, chat_model,
paragraph_list,
manage, padding_problem_text, client_id, client_type, no_references_setting,
model_setting)
manage, padding_problem_text, client_id, client_type, no_references_setting)
else:
return self.execute_block(message_list, chat_id, problem_text, post_response_handler, chat_model,
paragraph_list,
manage, padding_problem_text, client_id, client_type, no_references_setting,
model_setting)
manage, padding_problem_text, client_id, client_type, no_references_setting)
def get_details(self, manage, **kwargs):
return {
@ -222,8 +162,7 @@ class BaseChatStep(IChatStep):
return iter(
[AIMessageChunk(content=no_references_setting.get('value').replace('{question}', problem_text))]), False
if chat_model is None:
return iter([AIMessageChunk(
_('Sorry, the AI model is not configured. Please go to the application to set up the AI model first.'))]), False
return iter([AIMessageChunk('抱歉,没有配置 AI 模型,无法优化引用分段,请先去应用中设置 AI 模型。')]), False
else:
return chat_model.stream(message_list), True
@ -236,15 +175,14 @@ class BaseChatStep(IChatStep):
manage: PipelineManage = None,
padding_problem_text: str = None,
client_id=None, client_type=None,
no_references_setting=None,
model_setting=None):
no_references_setting=None):
chat_result, is_ai_chat = self.get_stream_result(message_list, chat_model, paragraph_list,
no_references_setting, problem_text)
chat_record_id = uuid.uuid1()
r = StreamingHttpResponse(
streaming_content=event_content(chat_result, chat_id, chat_record_id, paragraph_list,
post_response_handler, manage, self, chat_model, message_list, problem_text,
padding_problem_text, client_id, client_type, is_ai_chat, model_setting),
padding_problem_text, client_id, client_type, is_ai_chat),
content_type='text/event-stream;charset=utf-8')
r['Cache-Control'] = 'no-cache'
@ -258,17 +196,17 @@ class BaseChatStep(IChatStep):
problem_text=None):
if paragraph_list is None:
paragraph_list = []
directly_return_chunk_list = [AIMessageChunk(content=paragraph.content)
for paragraph in paragraph_list if (
paragraph.hit_handling_method == 'directly_return' and paragraph.similarity >= paragraph.directly_return_similarity)]
directly_return_chunk_list = [AIMessage(content=paragraph.content)
for paragraph in paragraph_list if
paragraph.hit_handling_method == 'directly_return']
if directly_return_chunk_list is not None and len(directly_return_chunk_list) > 0:
return directly_return_chunk_list[0], False
elif len(paragraph_list) == 0 and no_references_setting.get(
'status') == 'designated_answer':
return AIMessage(no_references_setting.get('value').replace('{question}', problem_text)), False
if chat_model is None:
return AIMessage(
_('Sorry, the AI model is not configured. Please go to the application to set up the AI model first.')), False
return AIMessage('抱歉,没有配置 AI 模型,无法优化引用分段,请先去应用中设置 AI 模型。'), False
else:
return chat_model.invoke(message_list), True
@ -280,13 +218,7 @@ class BaseChatStep(IChatStep):
paragraph_list=None,
manage: PipelineManage = None,
padding_problem_text: str = None,
client_id=None, client_type=None, no_references_setting=None,
model_setting=None):
reasoning_content_enable = model_setting.get('reasoning_content_enable', False)
reasoning_content_start = model_setting.get('reasoning_content_start', '<think>')
reasoning_content_end = model_setting.get('reasoning_content_end', '</think>')
reasoning = Reasoning(reasoning_content_start,
reasoning_content_end)
client_id=None, client_type=None, no_references_setting=None):
chat_record_id = uuid.uuid1()
# 调用模型
try:
@ -299,36 +231,16 @@ class BaseChatStep(IChatStep):
request_token = 0
response_token = 0
write_context(self, manage, request_token, response_token, chat_result.content)
reasoning_result = reasoning.get_reasoning_content(chat_result)
reasoning_result_end = reasoning.get_end_reasoning_content()
content = reasoning_result.get('content') + reasoning_result_end.get('content')
if 'reasoning_content' in chat_result.response_metadata:
reasoning_content = chat_result.response_metadata.get('reasoning_content', '')
else:
reasoning_content = reasoning_result.get('reasoning_content') + reasoning_result_end.get(
'reasoning_content')
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
content, manage, self, padding_problem_text, client_id,
reasoning_content=reasoning_content if reasoning_content_enable else '',
asker=asker)
add_access_num(client_id, client_type, manage.context.get('application_id'))
return manage.get_base_to_response().to_block_response(str(chat_id), str(chat_record_id),
content, True,
request_token, response_token,
{
'reasoning_content': reasoning_content if reasoning_content_enable else '',
'answer_list': [{
'content': content,
'reasoning_content': reasoning_content if reasoning_content_enable else ''
}]})
chat_result.content, manage, self, padding_problem_text, client_id)
add_access_num(client_id, client_type)
return result.success({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True,
'content': chat_result.content, 'is_end': True})
except Exception as e:
all_text = 'Exception:' + str(e)
all_text = '异常' + str(e)
write_context(self, manage, 0, 0, all_text)
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
all_text, manage, self, padding_problem_text, client_id, reasoning_content='',
asker=asker)
add_access_num(client_id, client_type, manage.context.get('application_id'))
return manage.get_base_to_response().to_block_response(str(chat_id), str(chat_record_id), all_text, True, 0,
0, _status=status.HTTP_500_INTERNAL_SERVER_ERROR)
all_text, manage, self, padding_problem_text, client_id)
add_access_num(client_id, client_type)
return result.success({'chat_id': str(chat_id), 'id': str(chat_record_id), 'operate': True,
'content': all_text, 'is_end': True})

View File

@ -9,7 +9,6 @@
from abc import abstractmethod
from typing import Type, List
from django.utils.translation import gettext_lazy as _
from langchain.schema import BaseMessage
from rest_framework import serializers
@ -24,26 +23,24 @@ from common.util.field_message import ErrMessage
class IGenerateHumanMessageStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 问题
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.char(_("question")))
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.char("问题"))
# 段落列表
paragraph_list = serializers.ListField(child=InstanceField(model_type=ParagraphPipelineModel, required=True),
error_messages=ErrMessage.list(_("Paragraph List")))
error_messages=ErrMessage.list("段落列表"))
# 历史对答
history_chat_record = serializers.ListField(child=InstanceField(model_type=ChatRecord, required=True),
error_messages=ErrMessage.list(_("History Questions")))
error_messages=ErrMessage.list("历史对答"))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer("多轮对话数量"))
# 最大携带知识库段落长度
max_paragraph_char_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(
_("Maximum length of the knowledge base paragraph")))
"最大携带知识库段落长度"))
# 模板
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
system = serializers.CharField(required=False, allow_null=True, allow_blank=True,
error_messages=ErrMessage.char(_("System prompt words (role)")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char("提示词"))
# 补齐问题
padding_problem_text = serializers.CharField(required=False, error_messages=ErrMessage.char(_("Completion problem")))
padding_problem_text = serializers.CharField(required=False, error_messages=ErrMessage.char("补齐问题"))
# 未查询到引用分段
no_references_setting = NoReferencesSetting(required=True, error_messages=ErrMessage.base(_("No reference segment settings")))
no_references_setting = NoReferencesSetting(required=True, error_messages=ErrMessage.base("无引用分段设置"))
def get_step_serializer(self, manage: PipelineManage) -> Type[serializers.Serializer]:
return self.InstanceSerializer
@ -62,7 +59,6 @@ class IGenerateHumanMessageStep(IBaseChatPipelineStep):
prompt: str,
padding_problem_text: str = None,
no_references_setting=None,
system=None,
**kwargs) -> List[BaseMessage]:
"""
@ -75,7 +71,6 @@ class IGenerateHumanMessageStep(IBaseChatPipelineStep):
:param padding_problem_text 用户修改文本
:param kwargs: 其他参数
:param no_references_setting: 无引用分段设置
:param system 系统提示称
:return:
"""
pass

View File

@ -9,7 +9,6 @@
from typing import List, Dict
from langchain.schema import BaseMessage, HumanMessage
from langchain_core.messages import SystemMessage
from application.chat_pipeline.I_base_chat_pipeline import ParagraphPipelineModel
from application.chat_pipeline.step.generate_human_message_step.i_generate_human_message_step import \
@ -28,7 +27,6 @@ class BaseGenerateHumanMessageStep(IGenerateHumanMessageStep):
prompt: str,
padding_problem_text: str = None,
no_references_setting=None,
system=None,
**kwargs) -> List[BaseMessage]:
prompt = prompt if (paragraph_list is not None and len(paragraph_list) > 0) else no_references_setting.get(
'value')
@ -37,11 +35,6 @@ class BaseGenerateHumanMessageStep(IGenerateHumanMessageStep):
history_message = [[history_chat_record[index].get_human_message(), history_chat_record[index].get_ai_message()]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))]
if system is not None and len(system) > 0:
return [SystemMessage(system), *flat_map(history_message),
self.to_human_message(prompt, exec_problem_text, max_paragraph_char_number, paragraph_list,
no_references_setting)]
return [*flat_map(history_message),
self.to_human_message(prompt, exec_problem_text, max_paragraph_char_number, paragraph_list,
no_references_setting)]

View File

@ -9,11 +9,12 @@
from abc import abstractmethod
from typing import Type, List
from django.utils.translation import gettext_lazy as _
from langchain.chat_models.base import BaseChatModel
from rest_framework import serializers
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep
from application.chat_pipeline.pipeline_manage import PipelineManage
from application.chat_pipeline.step.chat_step.i_chat_step import ModelField
from application.models import ChatRecord
from common.field.common import InstanceField
from common.util.field_message import ErrMessage
@ -22,16 +23,12 @@ from common.util.field_message import ErrMessage
class IResetProblemStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 问题文本
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.float(_("question")))
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.float("问题文本"))
# 历史对答
history_chat_record = serializers.ListField(child=InstanceField(model_type=ChatRecord, required=True),
error_messages=ErrMessage.list(_("History Questions")))
error_messages=ErrMessage.list("历史对答"))
# 大语言模型
model_id = serializers.UUIDField(required=False, allow_null=True, error_messages=ErrMessage.uuid(_("Model id")))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("User ID")))
problem_optimization_prompt = serializers.CharField(required=False, max_length=102400,
error_messages=ErrMessage.char(
_("Question completion prompt")))
chat_model = ModelField(required=False, allow_null=True, error_messages=ErrMessage.base("大语言模型"))
def get_step_serializer(self, manage: PipelineManage) -> Type[serializers.Serializer]:
return self.InstanceSerializer
@ -45,13 +42,10 @@ class IResetProblemStep(IBaseChatPipelineStep):
manage.context['problem_text'] = source_problem_text
manage.context['padding_problem_text'] = padding_problem
# 累加tokens
manage.context['message_tokens'] = manage.context.get('message_tokens', 0) + self.context.get('message_tokens',
0)
manage.context['answer_tokens'] = manage.context.get('answer_tokens', 0) + self.context.get('answer_tokens', 0)
manage.context['message_tokens'] = manage.context['message_tokens'] + self.context.get('message_tokens')
manage.context['answer_tokens'] = manage.context['answer_tokens'] + self.context.get('answer_tokens')
@abstractmethod
def execute(self, problem_text: str, history_chat_record: List[ChatRecord] = None, model_id: str = None,
problem_optimization_prompt=None,
user_id=None,
def execute(self, problem_text: str, history_chat_record: List[ChatRecord] = None, chat_model: BaseChatModel = None,
**kwargs):
pass

View File

@ -8,33 +8,30 @@
"""
from typing import List
from django.utils.translation import gettext as _
from langchain.chat_models.base import BaseChatModel
from langchain.schema import HumanMessage
from application.chat_pipeline.step.reset_problem_step.i_reset_problem_step import IResetProblemStep
from application.models import ChatRecord
from common.util.split_model import flat_map
from setting.models_provider.tools import get_model_instance_by_model_user_id
prompt = _(
"() contains the user's question. Answer the guessed user's question based on the context ({question}) Requirement: Output a complete question and put it in the <data></data> tag")
prompt = (
'()里面是用户问题,根据上下文回答揣测用户问题({question}) 要求: 输出一个补全问题,并且放在<data></data>标签中')
class BaseResetProblemStep(IResetProblemStep):
def execute(self, problem_text: str, history_chat_record: List[ChatRecord] = None, model_id: str = None,
problem_optimization_prompt=None,
user_id=None,
def execute(self, problem_text: str, history_chat_record: List[ChatRecord] = None, chat_model: BaseChatModel = None,
**kwargs) -> str:
chat_model = get_model_instance_by_model_user_id(model_id, user_id) if model_id is not None else None
if chat_model is None:
self.context['message_tokens'] = 0
self.context['answer_tokens'] = 0
return problem_text
start_index = len(history_chat_record) - 3
history_message = [[history_chat_record[index].get_human_message(), history_chat_record[index].get_ai_message()]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))]
reset_prompt = problem_optimization_prompt if problem_optimization_prompt else prompt
message_list = [*flat_map(history_message),
HumanMessage(content=reset_prompt.replace('{question}', problem_text))]
HumanMessage(content=prompt.format(**{'question': problem_text}))]
response = chat_model.invoke(message_list)
padding_problem = problem_text
if response.content.__contains__("<data>") and response.content.__contains__('</data>'):
@ -42,9 +39,6 @@ class BaseResetProblemStep(IResetProblemStep):
response.content.index('<data>') + 6:response.content.index('</data>')]
if padding_problem_data is not None and len(padding_problem_data.strip()) > 0:
padding_problem = padding_problem_data
elif len(response.content) > 0:
padding_problem = response.content
try:
request_token = chat_model.get_num_tokens_from_messages(message_list)
response_token = chat_model.get_num_tokens(padding_problem)
@ -60,8 +54,8 @@ class BaseResetProblemStep(IResetProblemStep):
'step_type': 'problem_padding',
'run_time': self.context['run_time'],
'model_id': str(manage.context['model_id']) if 'model_id' in manage.context else None,
'message_tokens': self.context.get('message_tokens', 0),
'answer_tokens': self.context.get('answer_tokens', 0),
'message_tokens': self.context['message_tokens'],
'answer_tokens': self.context['answer_tokens'],
'cost': 0,
'padding_problem_text': self.context.get('padding_problem_text'),
'problem_text': self.context.get("step_args").get('problem_text'),

View File

@ -11,7 +11,6 @@ from abc import abstractmethod
from typing import List, Type
from django.core import validators
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep, ParagraphPipelineModel
@ -22,30 +21,29 @@ from common.util.field_message import ErrMessage
class ISearchDatasetStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 原始问题文本
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.char(_("question")))
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.char("问题"))
# 系统补全问题文本
padding_problem_text = serializers.CharField(required=False,
error_messages=ErrMessage.char(_("System completes question text")))
padding_problem_text = serializers.CharField(required=False, error_messages=ErrMessage.char("系统补全问题文本"))
# 需要查询的数据集id列表
dataset_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("Dataset id list")))
error_messages=ErrMessage.list("数据集id列表"))
# 需要排除的文档id
exclude_document_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("List of document ids to exclude")))
error_messages=ErrMessage.list("排除的文档id列表"))
# 需要排除向量id
exclude_paragraph_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("List of exclusion vector ids")))
error_messages=ErrMessage.list("排除向量id列表"))
# 需要查询的条数
top_n = serializers.IntegerField(required=True,
error_messages=ErrMessage.integer(_("Reference segment number")))
error_messages=ErrMessage.integer("引用分段数"))
# 相似度 0-1之间
similarity = serializers.FloatField(required=True, max_value=1, min_value=0,
error_messages=ErrMessage.float(_("Similarity")))
error_messages=ErrMessage.float("引用分段数"))
search_mode = serializers.CharField(required=True, validators=[
validators.RegexValidator(regex=re.compile("^embedding|keywords|blend$"),
message=_("The type only supports embedding|keywords|blend"), code=500)
], error_messages=ErrMessage.char(_("Retrieval Mode")))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("User ID")))
message="类型只支持register|reset_password", code=500)
], error_messages=ErrMessage.char("检索模式"))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("用户id"))
def get_step_serializer(self, manage: PipelineManage) -> Type[InstanceSerializer]:
return self.InstanceSerializer

View File

@ -10,8 +10,6 @@ import os
from typing import List, Dict
from django.db.models import QuerySet
from django.utils.translation import gettext_lazy as _
from rest_framework.utils.formatting import lazy_format
from application.chat_pipeline.I_base_chat_pipeline import ParagraphPipelineModel
from application.chat_pipeline.step.search_dataset_step.i_search_dataset_step import ISearchDatasetStep
@ -28,19 +26,18 @@ from smartdoc.conf import PROJECT_DIR
def get_model_by_id(_id, user_id):
model = QuerySet(Model).filter(id=_id).first()
if model is None:
raise Exception(_("Model does not exist"))
raise Exception("模型不存在")
if model.permission_type == 'PRIVATE' and str(model.user_id) != str(user_id):
message = lazy_format(_('No permission to use this model {model_name}'), model_name=model.name)
raise Exception(message)
raise Exception(f"无权限使用此模型:{model.name}")
return model
def get_embedding_id(dataset_id_list):
dataset_list = QuerySet(DataSet).filter(id__in=dataset_id_list)
if len(set([dataset.embedding_mode_id for dataset in dataset_list])) > 1:
raise Exception(_("The vector model of the associated knowledge base is inconsistent and the segmentation cannot be recalled."))
raise Exception("关联知识库的向量模型不一致,无法召回分段。")
if len(dataset_list) == 0:
raise Exception(_("The knowledge base setting is wrong, please reset the knowledge base"))
raise Exception("知识库设置错误,请重新设置知识库")
return dataset_list[0].embedding_mode_id
@ -82,7 +79,6 @@ class BaseSearchDatasetStep(ISearchDatasetStep):
.add_document_name(paragraph.get('document_name'))
.add_hit_handling_method(paragraph.get('hit_handling_method'))
.add_directly_return_similarity(paragraph.get('directly_return_similarity'))
.add_meta(paragraph.get('meta'))
.build())
@staticmethod

View File

@ -1,44 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file common.py
@date2024/12/11 17:57
@desc:
"""
class Answer:
def __init__(self, content, view_type, runtime_node_id, chat_record_id, child_node, real_node_id,
reasoning_content):
self.view_type = view_type
self.content = content
self.reasoning_content = reasoning_content
self.runtime_node_id = runtime_node_id
self.chat_record_id = chat_record_id
self.child_node = child_node
self.real_node_id = real_node_id
def to_dict(self):
return {'view_type': self.view_type, 'content': self.content, 'runtime_node_id': self.runtime_node_id,
'chat_record_id': self.chat_record_id,
'child_node': self.child_node,
'reasoning_content': self.reasoning_content,
'real_node_id': self.real_node_id}
class NodeChunk:
def __init__(self):
self.status = 0
self.chunk_list = []
def add_chunk(self, chunk):
self.chunk_list.append(chunk)
def end(self, chunk=None):
if chunk is not None:
self.add_chunk(chunk)
self.status = 200
def is_end(self):
return self.status == 200

View File

@ -3,29 +3,24 @@
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"x": 440,
"y": 3350,
"properties": {
"config": {
},
"height": 825.6,
"config": {},
"height": 517,
"stepName": "基本信息",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"name": "",
"prologue": "您好,我是 MaxKB 小助手,您可以向我提出 MaxKB 使用问题。\n- MaxKB 主要功能有什么?\n- MaxKB 支持哪些大语言模型?\n- MaxKB 支持哪些文档类型?"
},
"input_field_list": [
]
}
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"x": 440,
"y": 3710,
"properties": {
"config": {
"fields": [
@ -36,8 +31,8 @@
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
"value": "time",
"label": "当前时间"
}
]
},
@ -47,7 +42,7 @@
"value": "question"
}
],
"height": 276,
"height": 268.533,
"stepName": "开始",
"globalFields": [
{
@ -60,8 +55,8 @@
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"x": 830,
"y": 3470,
"properties": {
"config": {
"fields": [
@ -83,12 +78,10 @@
}
]
},
"height": 794,
"height": 754.8,
"stepName": "知识库检索",
"node_data": {
"dataset_id_list": [
],
"dataset_id_list": [],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
@ -98,9 +91,6 @@
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
@ -108,8 +98,8 @@
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"x": 1380,
"y": 3470,
"properties": {
"width": 600,
"config": {
@ -120,7 +110,7 @@
}
]
},
"height": 543.675,
"height": 524.6669999999999,
"stepName": "判断器",
"node_data": {
"branch": [
@ -158,26 +148,24 @@
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
"conditions": []
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"height": 116.133,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"height": 116.133,
"id": "4908"
},
{
"index": 2,
"height": 44,
"height": 40,
"id": "161"
}
]
@ -186,8 +174,8 @@
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"x": 2090,
"y": 2820,
"properties": {
"config": {
"fields": [
@ -197,7 +185,7 @@
}
]
},
"height": 378,
"height": 312.267,
"stepName": "指定回复",
"node_data": {
"fields": [
@ -205,16 +193,15 @@
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
"reply_type": "referencing"
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"x": 2090,
"y": 3460,
"properties": {
"config": {
"fields": [
@ -224,22 +211,21 @@
}
]
},
"height": 763,
"height": 681.4,
"stepName": "AI 对话",
"node_data": {
"prompt": "已知信息:\n{{知识库检索.data}}\n问题\n{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
"dialogue_number": 0
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"x": 2090,
"y": 4180,
"properties": {
"config": {
"fields": [
@ -249,14 +235,13 @@
}
]
},
"height": 763,
"height": 681.4,
"stepName": "AI 对话1",
"node_data": {
"prompt": "{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
"dialogue_number": 0
}
}
}
@ -268,32 +253,30 @@
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
"x": 600,
"y": 3710
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
"x": 670,
"y": 3470
},
"properties": {},
"pointsList": [
{
"x": 590,
"y": 3660
"x": 600,
"y": 3710
},
{
"x": 700,
"y": 3660
"x": 710,
"y": 3710
},
{
"x": 570,
"y": 3210
"x": 560,
"y": 3470
},
{
"x": 680,
"y": 3210
"x": 670,
"y": 3470
}
],
"sourceAnchorId": "start-node_right",
@ -305,32 +288,30 @@
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
"x": 990,
"y": 3470
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
"x": 1090,
"y": 3470
},
"properties": {},
"pointsList": [
{
"x": 1000,
"y": 3210
"x": 990,
"y": 3470
},
{
"x": 1110,
"y": 3210
"x": 1100,
"y": 3470
},
{
"x": 980,
"y": 3470
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
"y": 3470
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
@ -342,32 +323,30 @@
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
"x": 1670,
"y": 3340.733
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
"x": 1930,
"y": 2820
},
"properties": {},
"pointsList": [
{
"x": 1670,
"y": 3340.733
},
{
"x": 1780,
"y": 3073.775
"y": 3340.733
},
{
"x": 1890,
"y": 3073.775
"x": 1820,
"y": 2820
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
"x": 1930,
"y": 2820
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
@ -379,32 +358,30 @@
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
"x": 1670,
"y": 3464.866
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
"x": 1930,
"y": 3460
},
"properties": {},
"pointsList": [
{
"x": 1670,
"y": 3464.866
},
{
"x": 1780,
"y": 3203
"y": 3464.866
},
{
"x": 1890,
"y": 3203
"x": 1820,
"y": 3460
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
"x": 1930,
"y": 3460
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
@ -416,32 +393,30 @@
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
"x": 1670,
"y": 3550.9325000000003
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
"x": 1930,
"y": 4180
},
"properties": {},
"pointsList": [
{
"x": 1670,
"y": 3550.9325000000003
},
{
"x": 1780,
"y": 3293.6124999999997
"y": 3550.9325000000003
},
{
"x": 1890,
"y": 3293.6124999999997
"x": 1820,
"y": 4180
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
"x": 1930,
"y": 4180
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "Base",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "Hello, I am the MaxKB assistant. You can ask me about MaxKB usage issues.\n-What are the main functions of MaxKB?\n-What major language models does MaxKB support?\n-What document types does MaxKB support?"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "Start",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "Knowledge Search",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "Conditional Branch",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "Specified Reply",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI Chat",
"node_data": {
"prompt": "Known information:\n{{Knowledge Search.data}}\nQuestion:\n{{Start.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI Chat1",
"node_data": {
"prompt": "{{Start.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "基本信息",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "您好,我是 MaxKB 小助手,您可以向我提出 MaxKB 使用问题。\n- MaxKB 主要功能有什么?\n- MaxKB 支持哪些大语言模型?\n- MaxKB 支持哪些文档类型?"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "开始",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "知识库检索",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "判断器",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "指定回复",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 对话",
"node_data": {
"prompt": "已知信息:\n{{知识库检索.data}}\n问题\n{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 对话1",
"node_data": {
"prompt": "{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "基本資訊",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "您好我是MaxKB小助手您可以向我提出MaxKB使用問題。\n- MaxKB主要功能有什麼\n- MaxKB支持哪些大語言模型\n- MaxKB支持哪些文檔類型"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "開始",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "知識庫檢索",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "判斷器",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "指定回覆",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 對話",
"node_data": {
"prompt": "已知資訊:\n{{知識庫檢索.data}}\n問題\n{{開始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 對話1",
"node_data": {
"prompt": "{{開始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -7,9 +7,7 @@
@desc:
"""
import time
import uuid
from abc import abstractmethod
from hashlib import sha1
from typing import Type, Dict, List
from django.core import cache
@ -17,7 +15,6 @@ from django.db.models import QuerySet
from rest_framework import serializers
from rest_framework.exceptions import ValidationError, ErrorDetail
from application.flow.common import Answer, NodeChunk
from application.models import ChatRecord
from application.models.api_key_model import ApplicationPublicAccessClient
from common.constants.authentication_type import AuthenticationType
@ -31,20 +28,16 @@ def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'answer' in step_variable:
if workflow.is_result() and 'answer' in step_variable:
answer = step_variable['answer']
yield answer
node.answer_text = answer
workflow.answer += answer
if global_variable is not None:
for key in global_variable:
workflow.context[key] = global_variable[key]
node.context['run_time'] = time.time() - node.context['start_time']
def is_interrupt(node, step_variable: Dict, global_variable: Dict):
return node.type == 'form-node' and not node.context.get('is_submit', False)
class WorkFlowPostHandler:
def __init__(self, chat_info, client_id, client_type):
self.chat_info = chat_info
@ -61,38 +54,21 @@ class WorkFlowPostHandler:
'message_tokens' in row and row.get('message_tokens') is not None])
answer_tokens = sum([row.get('answer_tokens') for row in details.values() if
'answer_tokens' in row and row.get('answer_tokens') is not None])
answer_text_list = workflow.get_answer_text_list()
answer_text = '\n\n'.join(
'\n\n'.join([a.get('content') for a in answer]) for answer in
answer_text_list)
if workflow.chat_record is not None:
chat_record = workflow.chat_record
chat_record.answer_text = answer_text
chat_record.details = details
chat_record.message_tokens = message_tokens
chat_record.answer_tokens = answer_tokens
chat_record.answer_text_list = answer_text_list
chat_record.run_time = time.time() - workflow.context['start_time']
else:
chat_record = ChatRecord(id=chat_record_id,
chat_id=chat_id,
problem_text=question,
answer_text=answer_text,
details=details,
message_tokens=message_tokens,
answer_tokens=answer_tokens,
answer_text_list=answer_text_list,
run_time=time.time() - workflow.context['start_time'],
index=0)
asker = workflow.context.get('asker', None)
self.chat_info.append_chat_record(chat_record, self.client_id, asker)
chat_record = ChatRecord(id=chat_record_id,
chat_id=chat_id,
problem_text=question,
answer_text=answer,
details=details,
message_tokens=message_tokens,
answer_tokens=answer_tokens,
run_time=time.time() - workflow.context['start_time'],
index=0)
self.chat_info.append_chat_record(chat_record, self.client_id)
# 重新设置缓存
chat_cache.set(chat_id,
self.chat_info, timeout=60 * 30)
if self.client_type == AuthenticationType.APPLICATION_ACCESS_TOKEN.value:
application_public_access_client = (QuerySet(ApplicationPublicAccessClient)
.filter(client_id=self.client_id,
application_id=self.chat_info.application.id).first())
application_public_access_client = QuerySet(ApplicationPublicAccessClient).filter(id=self.client_id).first()
if application_public_access_client is not None:
application_public_access_client.access_num = application_public_access_client.access_num + 1
application_public_access_client.intraday_access_num = application_public_access_client.intraday_access_num + 1
@ -101,11 +77,10 @@ class WorkFlowPostHandler:
class NodeResult:
def __init__(self, node_variable: Dict, workflow_variable: Dict,
_write_context=write_context, _is_interrupt=is_interrupt):
_write_context=write_context):
self._write_context = _write_context
self.node_variable = node_variable
self.workflow_variable = workflow_variable
self._is_interrupt = _is_interrupt
def write_context(self, node, workflow):
return self._write_context(self.node_variable, self.workflow_variable, node, workflow)
@ -113,14 +88,6 @@ class NodeResult:
def is_assertion_result(self):
return 'branch_id' in self.node_variable
def is_interrupt_exec(self, current_node):
"""
是否中断执行
@param current_node:
@return:
"""
return self._is_interrupt(current_node, self.node_variable, self.workflow_variable)
class ReferenceAddressSerializer(serializers.Serializer):
node_id = serializers.CharField(required=True, error_messages=ErrMessage.char("节点id"))
@ -151,42 +118,18 @@ class FlowParamsSerializer(serializers.Serializer):
class INode:
view_type = 'many_view'
@abstractmethod
def save_context(self, details, workflow_manage):
pass
def get_answer_list(self) -> List[Answer] | None:
if self.answer_text is None:
return None
reasoning_content_enable = self.context.get('model_setting', {}).get('reasoning_content_enable', False)
return [
Answer(self.answer_text, self.view_type, self.runtime_node_id, self.workflow_params['chat_record_id'], {},
self.runtime_node_id, self.context.get('reasoning_content', '') if reasoning_content_enable else '')]
def __init__(self, node, workflow_params, workflow_manage, up_node_id_list=None,
get_node_params=lambda node: node.properties.get('node_data')):
def __init__(self, node, workflow_params, workflow_manage):
# 当前步骤上下文,用于存储当前步骤信息
self.status = 200
self.err_message = ''
self.node = node
self.node_params = get_node_params(node)
self.node_params = node.properties.get('node_data')
self.workflow_params = workflow_params
self.workflow_manage = workflow_manage
self.node_params_serializer = None
self.flow_params_serializer = None
self.context = {}
self.answer_text = None
self.id = node.id
if up_node_id_list is None:
up_node_id_list = []
self.up_node_id_list = up_node_id_list
self.node_chunk = NodeChunk()
self.runtime_node_id = sha1(uuid.NAMESPACE_DNS.bytes + bytes(str(uuid.uuid5(uuid.NAMESPACE_DNS,
"".join([*sorted(up_node_id_list),
node.id]))),
"utf-8")).hexdigest()
def valid_args(self, node_params, flow_params):
flow_params_serializer_class = self.get_flow_params_serializer_class()
@ -222,9 +165,7 @@ class INode:
def get_write_error_context(self, e):
self.status = 500
self.answer_text = str(e)
self.err_message = str(e)
self.context['run_time'] = time.time() - self.context['start_time']
def write_error_context(answer, status=200):
pass

View File

@ -7,32 +7,16 @@
@desc:
"""
from .ai_chat_step_node import *
from .application_node import BaseApplicationNode
from .condition_node import *
from .question_node import *
from .search_dataset_node import *
from .start_node import *
from .direct_reply_node import *
from .form_node import *
from .function_lib_node import *
from .function_node import *
from .question_node import *
from .reranker_node import *
from .document_extract_node import *
from .image_understand_step_node import *
from .image_generate_step_node import *
from .search_dataset_node import *
from .speech_to_text_step_node import BaseSpeechToTextNode
from .start_node import *
from .text_to_speech_step_node.impl.base_text_to_speech_node import BaseTextToSpeechNode
from .variable_assign_node import BaseVariableAssignNode
from .mcp_node import BaseMcpNode
node_list = [BaseStartStepNode, BaseChatNode, BaseSearchDatasetNode, BaseQuestionNode,
BaseConditionNode, BaseReplyNode,
BaseFunctionNodeNode, BaseFunctionLibNodeNode, BaseRerankerNode, BaseApplicationNode,
BaseDocumentExtractNode,
BaseImageUnderstandNode, BaseFormNode, BaseSpeechToTextNode, BaseTextToSpeechNode,
BaseImageGenerateNode, BaseVariableAssignNode, BaseMcpNode]
node_list = [BaseStartStepNode, BaseChatNode, BaseSearchDatasetNode, BaseQuestionNode, BaseConditionNode, BaseReplyNode,
BaseFunctionNodeNode, BaseFunctionLibNodeNode]
def get_node(node_type):

View File

@ -8,7 +8,6 @@
"""
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
@ -16,26 +15,16 @@ from common.util.field_message import ErrMessage
class ChatNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char("模型id"))
system = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Role Setting")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
error_messages=ErrMessage.char("角色设定"))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char("提示词"))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(
_("Number of multi-round conversations")))
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer("多轮对话数量"))
is_result = serializers.BooleanField(required=False,
error_messages=ErrMessage.boolean(_('Whether to return content')))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean('是否返回内容'))
model_params_setting = serializers.DictField(required=False,
error_messages=ErrMessage.dict(_("Model parameter settings")))
model_setting = serializers.DictField(required=False,
error_messages=ErrMessage.dict('Model settings'))
dialogue_type = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Context Type")))
mcp_enable = serializers.BooleanField(required=False,
error_messages=ErrMessage.boolean(_("Whether to enable MCP")))
mcp_servers = serializers.JSONField(required=False, error_messages=ErrMessage.list(_("MCP Server")))
model_params_setting = serializers.DictField(required=False, error_messages=ErrMessage.integer("模型参数相关设置"))
class IChatNode(INode):
@ -50,9 +39,5 @@ class IChatNode(INode):
def execute(self, model_id, system, prompt, dialogue_number, history_chat_record, stream, chat_id,
chat_record_id,
model_params_setting=None,
dialogue_type=None,
model_setting=None,
mcp_enable=False,
mcp_servers=None,
**kwargs) -> NodeResult:
pass

View File

@ -6,43 +6,22 @@
@date2024/6/4 14:30
@desc:
"""
import asyncio
import json
import re
import time
from functools import reduce
from types import AsyncGeneratorType
from typing import List, Dict
from django.db.models import QuerySet
from langchain.schema import HumanMessage, SystemMessage
from langchain_core.messages import BaseMessage, AIMessage, AIMessageChunk, ToolMessage
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_core.messages import BaseMessage
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.ai_chat_step_node.i_chat_node import IChatNode
from application.flow.tools import Reasoning
from setting.models import Model
from setting.models_provider import get_model_credential
from setting.models_provider.tools import get_model_instance_by_model_user_id
tool_message_template = """
<details>
<summary>
<strong>Called MCP Tool: <em>%s</em></strong>
</summary>
```json
%s
```
</details>
"""
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str,
reasoning_content: str):
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str):
chat_model = node_variable.get('chat_model')
message_tokens = chat_model.get_num_tokens_from_messages(node_variable.get('message_list'))
answer_tokens = chat_model.get_num_tokens(answer)
@ -52,9 +31,8 @@ def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, wo
node.context['history_message'] = node_variable['history_message']
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
node.context['reasoning_content'] = reasoning_content
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
if workflow.is_result():
workflow.answer += answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
@ -67,73 +45,10 @@ def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INo
"""
response = node_variable.get('result')
answer = ''
reasoning_content = ''
model_setting = node.context.get('model_setting',
{'reasoning_content_enable': False, 'reasoning_content_end': '</think>',
'reasoning_content_start': '<think>'})
reasoning = Reasoning(model_setting.get('reasoning_content_start', '<think>'),
model_setting.get('reasoning_content_end', '</think>'))
response_reasoning_content = False
for chunk in response:
reasoning_chunk = reasoning.get_reasoning_content(chunk)
content_chunk = reasoning_chunk.get('content')
if 'reasoning_content' in chunk.additional_kwargs:
response_reasoning_content = True
reasoning_content_chunk = chunk.additional_kwargs.get('reasoning_content', '')
else:
reasoning_content_chunk = reasoning_chunk.get('reasoning_content')
answer += content_chunk
if reasoning_content_chunk is None:
reasoning_content_chunk = ''
reasoning_content += reasoning_content_chunk
yield {'content': content_chunk,
'reasoning_content': reasoning_content_chunk if model_setting.get('reasoning_content_enable',
False) else ''}
reasoning_chunk = reasoning.get_end_reasoning_content()
answer += reasoning_chunk.get('content')
reasoning_content_chunk = ""
if not response_reasoning_content:
reasoning_content_chunk = reasoning_chunk.get(
'reasoning_content')
yield {'content': reasoning_chunk.get('content'),
'reasoning_content': reasoning_content_chunk if model_setting.get('reasoning_content_enable',
False) else ''}
_write_context(node_variable, workflow_variable, node, workflow, answer, reasoning_content)
async def _yield_mcp_response(chat_model, message_list, mcp_servers):
async with MultiServerMCPClient(json.loads(mcp_servers)) as client:
agent = create_react_agent(chat_model, client.get_tools())
response = agent.astream({"messages": message_list}, stream_mode='messages')
async for chunk in response:
if isinstance(chunk[0], ToolMessage):
content = tool_message_template % (chunk[0].name, chunk[0].content)
chunk[0].content = content
yield chunk[0]
if isinstance(chunk[0], AIMessageChunk):
yield chunk[0]
def mcp_response_generator(chat_model, message_list, mcp_servers):
loop = asyncio.new_event_loop()
try:
async_gen = _yield_mcp_response(chat_model, message_list, mcp_servers)
while True:
try:
chunk = loop.run_until_complete(anext_async(async_gen))
yield chunk
except StopAsyncIteration:
break
except Exception as e:
print(f'exception: {e}')
finally:
loop.close()
async def anext_async(agen):
return await agen.__anext__()
answer += chunk.content
yield chunk.content
_write_context(node_variable, workflow_variable, node, workflow, answer)
def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
@ -145,18 +60,8 @@ def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, wor
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
model_setting = node.context.get('model_setting',
{'reasoning_content_enable': False, 'reasoning_content_end': '</think>',
'reasoning_content_start': '<think>'})
reasoning = Reasoning(model_setting.get('reasoning_content_start'), model_setting.get('reasoning_content_end'))
reasoning_result = reasoning.get_reasoning_content(response)
reasoning_result_end = reasoning.get_end_reasoning_content()
content = reasoning_result.get('content') + reasoning_result_end.get('content')
if 'reasoning_content' in response.response_metadata:
reasoning_content = response.response_metadata.get('reasoning_content', '')
else:
reasoning_content = reasoning_result.get('reasoning_content') + reasoning_result_end.get('reasoning_content')
_write_context(node_variable, workflow_variable, node, workflow, content, reasoning_content)
answer = response.content
_write_context(node_variable, workflow_variable, node, workflow, answer)
def get_default_model_params_setting(model_id):
@ -167,65 +72,20 @@ def get_default_model_params_setting(model_id):
return model_params_setting
def get_node_message(chat_record, runtime_node_id):
node_details = chat_record.get_node_details_runtime_node_id(runtime_node_id)
if node_details is None:
return []
return [HumanMessage(node_details.get('question')), AIMessage(node_details.get('answer'))]
def get_workflow_message(chat_record):
return [chat_record.get_human_message(), chat_record.get_ai_message()]
def get_message(chat_record, dialogue_type, runtime_node_id):
return get_node_message(chat_record, runtime_node_id) if dialogue_type == 'NODE' else get_workflow_message(
chat_record)
class BaseChatNode(IChatNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['question'] = details.get('question')
self.context['reasoning_content'] = details.get('reasoning_content')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, model_id, system, prompt, dialogue_number, history_chat_record, stream, chat_id, chat_record_id,
model_params_setting=None,
dialogue_type=None,
model_setting=None,
mcp_enable=False,
mcp_servers=None,
**kwargs) -> NodeResult:
if dialogue_type is None:
dialogue_type = 'WORKFLOW'
if model_params_setting is None:
model_params_setting = get_default_model_params_setting(model_id)
if model_setting is None:
model_setting = {'reasoning_content_enable': False, 'reasoning_content_end': '</think>',
'reasoning_content_start': '<think>'}
self.context['model_setting'] = model_setting
chat_model = get_model_instance_by_model_user_id(model_id, self.flow_params_serializer.data.get('user_id'),
**model_params_setting)
history_message = self.get_history_message(history_chat_record, dialogue_number, dialogue_type,
self.runtime_node_id)
history_message = self.get_history_message(history_chat_record, dialogue_number)
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question.content
system = self.workflow_manage.generate_prompt(system)
self.context['system'] = system
message_list = self.generate_message_list(system, prompt, history_message)
self.context['message_list'] = message_list
if mcp_enable and mcp_servers is not None and '"stdio"' not in mcp_servers:
r = mcp_response_generator(chat_model, message_list, mcp_servers)
return NodeResult(
{'result': r, 'chat_model': chat_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context_stream)
if stream:
r = chat_model.stream(message_list)
return NodeResult({'result': r, 'chat_model': chat_model, 'message_list': message_list,
@ -238,15 +98,12 @@ class BaseChatNode(IChatNode):
_write_context=write_context)
@staticmethod
def get_history_message(history_chat_record, dialogue_number, dialogue_type, runtime_node_id):
def get_history_message(history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
get_message(history_chat_record[index], dialogue_type, runtime_node_id)
[history_chat_record[index].get_human_message(), history_chat_record[index].get_ai_message()]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
for message in history_message:
if isinstance(message.content, str):
message.content = re.sub('<form_rander>[\d\D]*?<\/form_rander>', '', message.content)
return history_message
def generate_prompt_question(self, prompt):
@ -273,13 +130,12 @@ class BaseChatNode(IChatNode):
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'system': self.context.get('system'),
'system': self.node_params.get('system'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'reasoning_content': self.context.get('reasoning_content'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),

View File

@ -1,2 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,86 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ApplicationNodeSerializer(serializers.Serializer):
application_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Application ID")))
question_reference_address = serializers.ListField(required=True,
error_messages=ErrMessage.list(_("User Questions")))
api_input_field_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("API Input Fields")))
user_input_field_list = serializers.ListField(required=False,
error_messages=ErrMessage.uuid(_("User Input Fields")))
image_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("picture")))
document_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("document")))
audio_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("Audio")))
child_node = serializers.DictField(required=False, allow_null=True,
error_messages=ErrMessage.dict(_("Child Nodes")))
node_data = serializers.DictField(required=False, allow_null=True, error_messages=ErrMessage.dict(_("Form Data")))
class IApplicationNode(INode):
type = 'application-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ApplicationNodeSerializer
def _run(self):
question = self.workflow_manage.get_reference_field(
self.node_params_serializer.data.get('question_reference_address')[0],
self.node_params_serializer.data.get('question_reference_address')[1:])
kwargs = {}
for api_input_field in self.node_params_serializer.data.get('api_input_field_list', []):
value = api_input_field.get('value', [''])[0] if api_input_field.get('value') else ''
kwargs[api_input_field['variable']] = self.workflow_manage.get_reference_field(value,
api_input_field['value'][
1:]) if value != '' else ''
for user_input_field in self.node_params_serializer.data.get('user_input_field_list', []):
value = user_input_field.get('value', [''])[0] if user_input_field.get('value') else ''
kwargs[user_input_field['field']] = self.workflow_manage.get_reference_field(value,
user_input_field['value'][
1:]) if value != '' else ''
# 判断是否包含这个属性
app_document_list = self.node_params_serializer.data.get('document_list', [])
if app_document_list and len(app_document_list) > 0:
app_document_list = self.workflow_manage.get_reference_field(
app_document_list[0],
app_document_list[1:])
for document in app_document_list:
if 'file_id' not in document:
raise ValueError(
_("Parameter value error: The uploaded document lacks file_id, and the document upload fails"))
app_image_list = self.node_params_serializer.data.get('image_list', [])
if app_image_list and len(app_image_list) > 0:
app_image_list = self.workflow_manage.get_reference_field(
app_image_list[0],
app_image_list[1:])
for image in app_image_list:
if 'file_id' not in image:
raise ValueError(
_("Parameter value error: The uploaded image lacks file_id, and the image upload fails"))
app_audio_list = self.node_params_serializer.data.get('audio_list', [])
if app_audio_list and len(app_audio_list) > 0:
app_audio_list = self.workflow_manage.get_reference_field(
app_audio_list[0],
app_audio_list[1:])
for audio in app_audio_list:
if 'file_id' not in audio:
raise ValueError(
_("Parameter value error: The uploaded audio lacks file_id, and the audio upload fails."))
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data,
app_document_list=app_document_list, app_image_list=app_image_list,
app_audio_list=app_audio_list,
message=str(question), **kwargs)
def execute(self, application_id, message, chat_id, chat_record_id, stream, re_chat, client_id, client_type,
app_document_list=None, app_image_list=None, app_audio_list=None, child_node=None, node_data=None,
**kwargs) -> NodeResult:
pass

View File

@ -1,2 +0,0 @@
# coding=utf-8
from .base_application_node import BaseApplicationNode

View File

@ -1,267 +0,0 @@
# coding=utf-8
import json
import re
import time
import uuid
from typing import Dict, List
from application.flow.common import Answer
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.application_node.i_application_node import IApplicationNode
from application.models import Chat
def string_to_uuid(input_str):
return str(uuid.uuid5(uuid.NAMESPACE_DNS, input_str))
def _is_interrupt_exec(node, node_variable: Dict, workflow_variable: Dict):
return node_variable.get('is_interrupt_exec', False)
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str,
reasoning_content: str):
result = node_variable.get('result')
node.context['application_node_dict'] = node_variable.get('application_node_dict')
node.context['node_dict'] = node_variable.get('node_dict', {})
node.context['is_interrupt_exec'] = node_variable.get('is_interrupt_exec')
node.context['message_tokens'] = result.get('usage', {}).get('prompt_tokens', 0)
node.context['answer_tokens'] = result.get('usage', {}).get('completion_tokens', 0)
node.context['answer'] = answer
node.context['result'] = answer
node.context['reasoning_content'] = reasoning_content
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据 (流式)
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = ''
reasoning_content = ''
usage = {}
node_child_node = {}
application_node_dict = node.context.get('application_node_dict', {})
is_interrupt_exec = False
for chunk in response:
# 先把流转成字符串
response_content = chunk.decode('utf-8')[6:]
response_content = json.loads(response_content)
content = response_content.get('content', '')
runtime_node_id = response_content.get('runtime_node_id', '')
chat_record_id = response_content.get('chat_record_id', '')
child_node = response_content.get('child_node')
view_type = response_content.get('view_type')
node_type = response_content.get('node_type')
real_node_id = response_content.get('real_node_id')
node_is_end = response_content.get('node_is_end', False)
_reasoning_content = response_content.get('reasoning_content', '')
if node_type == 'form-node':
is_interrupt_exec = True
answer += content
reasoning_content += _reasoning_content
node_child_node = {'runtime_node_id': runtime_node_id, 'chat_record_id': chat_record_id,
'child_node': child_node}
if real_node_id is not None:
application_node = application_node_dict.get(real_node_id, None)
if application_node is None:
application_node_dict[real_node_id] = {'content': content,
'runtime_node_id': runtime_node_id,
'chat_record_id': chat_record_id,
'child_node': child_node,
'index': len(application_node_dict),
'view_type': view_type,
'reasoning_content': _reasoning_content}
else:
application_node['content'] += content
application_node['reasoning_content'] += _reasoning_content
yield {'content': content,
'node_type': node_type,
'runtime_node_id': runtime_node_id, 'chat_record_id': chat_record_id,
'reasoning_content': _reasoning_content,
'child_node': child_node,
'real_node_id': real_node_id,
'node_is_end': node_is_end,
'view_type': view_type}
usage = response_content.get('usage', {})
node_variable['result'] = {'usage': usage}
node_variable['is_interrupt_exec'] = is_interrupt_exec
node_variable['child_node'] = node_child_node
node_variable['application_node_dict'] = application_node_dict
_write_context(node_variable, workflow_variable, node, workflow, answer, reasoning_content)
def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点实例对象
@param workflow: 工作流管理器
"""
response = node_variable.get('result', {}).get('data', {})
node_variable['result'] = {'usage': {'completion_tokens': response.get('completion_tokens'),
'prompt_tokens': response.get('prompt_tokens')}}
answer = response.get('content', '') or "抱歉,没有查找到相关内容,请重新描述您的问题或提供更多信息。"
reasoning_content = response.get('reasoning_content', '')
answer_list = response.get('answer_list', [])
node_variable['application_node_dict'] = {answer.get('real_node_id'): {**answer, 'index': index} for answer, index
in
zip(answer_list, range(len(answer_list)))}
_write_context(node_variable, workflow_variable, node, workflow, answer, reasoning_content)
def reset_application_node_dict(application_node_dict, runtime_node_id, node_data):
try:
if application_node_dict is None:
return
for key in application_node_dict:
application_node = application_node_dict[key]
if application_node.get('runtime_node_id') == runtime_node_id:
content: str = application_node.get('content')
match = re.search('<form_rander>.*?</form_rander>', content)
if match:
form_setting_str = match.group().replace('<form_rander>', '').replace('</form_rander>', '')
form_setting = json.loads(form_setting_str)
form_setting['is_submit'] = True
form_setting['form_data'] = node_data
value = f'<form_rander>{json.dumps(form_setting)}</form_rander>'
res = re.sub('<form_rander>.*?</form_rander>',
'${value}', content)
application_node['content'] = res.replace('${value}', value)
except Exception as e:
pass
class BaseApplicationNode(IApplicationNode):
def get_answer_list(self) -> List[Answer] | None:
if self.answer_text is None:
return None
application_node_dict = self.context.get('application_node_dict')
if application_node_dict is None or len(application_node_dict) == 0:
return [
Answer(self.answer_text, self.view_type, self.runtime_node_id, self.workflow_params['chat_record_id'],
self.context.get('child_node'), self.runtime_node_id, '')]
else:
return [Answer(n.get('content'), n.get('view_type'), self.runtime_node_id,
self.workflow_params['chat_record_id'], {'runtime_node_id': n.get('runtime_node_id'),
'chat_record_id': n.get('chat_record_id')
, 'child_node': n.get('child_node')}, n.get('real_node_id'),
n.get('reasoning_content', ''))
for n in
sorted(application_node_dict.values(), key=lambda item: item.get('index'))]
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['result'] = details.get('answer')
self.context['question'] = details.get('question')
self.context['type'] = details.get('type')
self.context['reasoning_content'] = details.get('reasoning_content')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, application_id, message, chat_id, chat_record_id, stream, re_chat, client_id, client_type,
app_document_list=None, app_image_list=None, app_audio_list=None, child_node=None, node_data=None,
**kwargs) -> NodeResult:
from application.serializers.chat_message_serializers import ChatMessageSerializer
# 生成嵌入应用的chat_id
current_chat_id = string_to_uuid(chat_id + application_id)
Chat.objects.get_or_create(id=current_chat_id, defaults={
'application_id': application_id,
'abstract': message[0:1024],
'client_id': client_id,
})
if app_document_list is None:
app_document_list = []
if app_image_list is None:
app_image_list = []
if app_audio_list is None:
app_audio_list = []
runtime_node_id = None
record_id = None
child_node_value = None
if child_node is not None:
runtime_node_id = child_node.get('runtime_node_id')
record_id = child_node.get('chat_record_id')
child_node_value = child_node.get('child_node')
application_node_dict = self.context.get('application_node_dict')
reset_application_node_dict(application_node_dict, runtime_node_id, node_data)
response = ChatMessageSerializer(
data={'chat_id': current_chat_id, 'message': message,
're_chat': re_chat,
'stream': stream,
'application_id': application_id,
'client_id': client_id,
'client_type': client_type,
'document_list': app_document_list,
'image_list': app_image_list,
'audio_list': app_audio_list,
'runtime_node_id': runtime_node_id,
'chat_record_id': record_id,
'child_node': child_node_value,
'node_data': node_data,
'form_data': kwargs}).chat()
if response.status_code == 200:
if stream:
content_generator = response.streaming_content
return NodeResult({'result': content_generator, 'question': message}, {},
_write_context=write_context_stream, _is_interrupt=_is_interrupt_exec)
else:
data = json.loads(response.content)
return NodeResult({'result': data, 'question': message}, {},
_write_context=write_context, _is_interrupt=_is_interrupt_exec)
def get_details(self, index: int, **kwargs):
global_fields = []
for api_input_field in self.node_params_serializer.data.get('api_input_field_list', []):
value = api_input_field.get('value', [''])[0] if api_input_field.get('value') else ''
global_fields.append({
'label': api_input_field['variable'],
'key': api_input_field['variable'],
'value': self.workflow_manage.get_reference_field(
value,
api_input_field['value'][1:]
) if value != '' else ''
})
for user_input_field in self.node_params_serializer.data.get('user_input_field_list', []):
value = user_input_field.get('value', [''])[0] if user_input_field.get('value') else ''
global_fields.append({
'label': user_input_field['label'],
'key': user_input_field['field'],
'value': self.workflow_manage.get_reference_field(
value,
user_input_field['value'][1:]
) if value != '' else ''
})
return {
'name': self.node.properties.get('stepName'),
"index": index,
"info": self.node.properties.get('node_data'),
'run_time': self.context.get('run_time'),
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'reasoning_content': self.context.get('reasoning_content'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message,
'global_fields': global_fields,
'document_list': self.workflow_manage.document_list,
'image_list': self.workflow_manage.image_list,
'audio_list': self.workflow_manage.audio_list,
'application_node_dict': self.context.get('application_node_dict')
}

View File

@ -9,22 +9,20 @@
from .contain_compare import *
from .equal_compare import *
from .ge_compare import *
from .gt_compare import *
from .is_not_null_compare import *
from .is_not_true import IsNotTrueCompare
from .is_null_compare import *
from .is_true import IsTrueCompare
from .ge_compare import *
from .le_compare import *
from .len_equal_compare import *
from .lt_compare import *
from .len_ge_compare import *
from .len_gt_compare import *
from .len_le_compare import *
from .len_lt_compare import *
from .lt_compare import *
from .len_equal_compare import *
from .is_not_null_compare import *
from .is_null_compare import *
from .not_contain_compare import *
compare_handle_list = [GECompare(), GTCompare(), ContainCompare(), EqualCompare(), LTCompare(), LECompare(),
LenLECompare(), LenGECompare(), LenEqualCompare(), LenGTCompare(), LenLTCompare(),
IsNullCompare(),
IsNotNullCompare(), NotContainCompare(), IsTrueCompare(), IsNotTrueCompare()]
IsNotNullCompare(), NotContainCompare()]

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file is_not_true.py
@date2025/4/7 13:44
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare import Compare
class IsNotTrueCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'is_not_true':
return True
def compare(self, source_value, compare, target_value):
try:
return source_value is False
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file IsTrue.py
@date2025/4/7 13:38
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare import Compare
class IsTrueCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'is_true':
return True
def compare(self, source_value, compare, target_value):
try:
return source_value is True
except Exception as e:
return False

View File

@ -6,9 +6,9 @@
@date2024/6/7 9:54
@desc:
"""
import json
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode
@ -16,15 +16,15 @@ from common.util.field_message import ErrMessage
class ConditionSerializer(serializers.Serializer):
compare = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Comparator")))
value = serializers.CharField(required=True, error_messages=ErrMessage.char(_("value")))
field = serializers.ListField(required=True, error_messages=ErrMessage.char(_("Fields")))
compare = serializers.CharField(required=True, error_messages=ErrMessage.char("比较器"))
value = serializers.CharField(required=True, error_messages=ErrMessage.char(""))
field = serializers.ListField(required=True, error_messages=ErrMessage.char("字段"))
class ConditionBranchSerializer(serializers.Serializer):
id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Branch id")))
type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Branch Type")))
condition = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Condition or|and")))
id = serializers.CharField(required=True, error_messages=ErrMessage.char("分支id"))
type = serializers.CharField(required=True, error_messages=ErrMessage.char("分支类型"))
condition = serializers.CharField(required=True, error_messages=ErrMessage.char("条件or|and"))
conditions = ConditionSerializer(many=True)

View File

@ -14,10 +14,6 @@ from application.flow.step_node.condition_node.i_condition_node import IConditio
class BaseConditionNode(IConditionNode):
def save_context(self, details, workflow_manage):
self.context['branch_id'] = details.get('branch_id')
self.context['branch_name'] = details.get('branch_name')
def execute(self, **kwargs) -> NodeResult:
branch_list = self.node_params_serializer.data['branch']
branch = self._execute(branch_list)
@ -36,15 +32,7 @@ class BaseConditionNode(IConditionNode):
return all(condition_list) if condition == 'and' else any(condition_list)
def assertion(self, field_list: List[str], compare: str, value):
try:
value = self.workflow_manage.generate_prompt(value)
except Exception as e:
pass
field_value = None
try:
field_value = self.workflow_manage.get_reference_field(field_list[0], field_list[1:])
except Exception as e:
pass
field_value = self.workflow_manage.get_reference_field(field_list[0], field_list[1:])
for compare_handler in compare_handle_list:
if compare_handler.support(field_list[0], field_list[1:], field_value, compare, value):
return compare_handler.compare(field_value, compare, value)

View File

@ -13,26 +13,25 @@ from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.exception.app_exception import AppApiException
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ReplyNodeParamsSerializer(serializers.Serializer):
reply_type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Response Type")))
fields = serializers.ListField(required=False, error_messages=ErrMessage.list(_("Reference Field")))
reply_type = serializers.CharField(required=True, error_messages=ErrMessage.char("回复类型"))
fields = serializers.ListField(required=False, error_messages=ErrMessage.list("引用字段"))
content = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Direct answer content")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
error_messages=ErrMessage.char("直接回答内容"))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean('是否返回内容'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if self.data.get('reply_type') == 'referencing':
if 'fields' not in self.data:
raise AppApiException(500, _("Reference field cannot be empty"))
raise AppApiException(500, "引用字段不能为空")
if len(self.data.get('fields')) < 2:
raise AppApiException(500, _("Reference field error"))
raise AppApiException(500, "引用字段错误")
else:
if 'content' not in self.data or self.data.get('content') is None:
raise AppApiException(500, _("Content cannot be empty"))
raise AppApiException(500, "内容不能为空")
class IReplyNode(INode):

View File

@ -13,11 +13,6 @@ from application.flow.step_node.direct_reply_node.i_reply_node import IReplyNode
class BaseReplyNode(IReplyNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, reply_type, stream, fields=None, content=None, **kwargs) -> NodeResult:
if reply_type == 'referencing':
result = self.get_reference_content(fields)

View File

@ -1 +0,0 @@
from .impl import *

View File

@ -1,28 +0,0 @@
# coding=utf-8
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
class DocumentExtractNodeSerializer(serializers.Serializer):
document_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("document")))
class IDocumentExtractNode(INode):
type = 'document-extract-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return DocumentExtractNodeSerializer
def _run(self):
res = self.workflow_manage.get_reference_field(self.node_params_serializer.data.get('document_list')[0],
self.node_params_serializer.data.get('document_list')[1:])
return self.execute(document=res, **self.flow_params_serializer.data)
def execute(self, document, chat_id, **kwargs) -> NodeResult:
pass

View File

@ -1 +0,0 @@
from .base_document_extract_node import BaseDocumentExtractNode

View File

@ -1,94 +0,0 @@
# coding=utf-8
import io
import mimetypes
from django.core.files.uploadedfile import InMemoryUploadedFile
from django.db.models import QuerySet
from application.flow.i_step_node import NodeResult
from application.flow.step_node.document_extract_node.i_document_extract_node import IDocumentExtractNode
from dataset.models import File
from dataset.serializers.document_serializers import split_handles, parse_table_handle_list, FileBufferHandle
from dataset.serializers.file_serializers import FileSerializer
def bytes_to_uploaded_file(file_bytes, file_name="file.txt"):
content_type, _ = mimetypes.guess_type(file_name)
if content_type is None:
# 如果未能识别,设置为默认的二进制文件类型
content_type = "application/octet-stream"
# 创建一个内存中的字节流对象
file_stream = io.BytesIO(file_bytes)
# 获取文件大小
file_size = len(file_bytes)
# 创建 InMemoryUploadedFile 对象
uploaded_file = InMemoryUploadedFile(
file=file_stream,
field_name=None,
name=file_name,
content_type=content_type,
size=file_size,
charset=None,
)
return uploaded_file
splitter = '\n`-----------------------------------`\n'
class BaseDocumentExtractNode(IDocumentExtractNode):
def save_context(self, details, workflow_manage):
self.context['content'] = details.get('content')
def execute(self, document, chat_id, **kwargs):
get_buffer = FileBufferHandle().get_buffer
self.context['document_list'] = document
content = []
if document is None or not isinstance(document, list):
return NodeResult({'content': ''}, {})
application = self.workflow_manage.work_flow_post_handler.chat_info.application
# doc文件中的图片保存
def save_image(image_list):
for image in image_list:
meta = {
'debug': False if application.id else True,
'chat_id': chat_id,
'application_id': str(application.id) if application.id else None,
'file_id': str(image.id)
}
file = bytes_to_uploaded_file(image.image, image.image_name)
FileSerializer(data={'file': file, 'meta': meta}).upload()
for doc in document:
file = QuerySet(File).filter(id=doc['file_id']).first()
buffer = io.BytesIO(file.get_byte().tobytes())
buffer.name = doc['name'] # this is the important line
for split_handle in (parse_table_handle_list + split_handles):
if split_handle.support(buffer, get_buffer):
# 回到文件头
buffer.seek(0)
file_content = split_handle.get_content(buffer, save_image)
content.append('### ' + doc['name'] + '\n' + file_content)
break
return NodeResult({'content': splitter.join(content)}, {})
def get_details(self, index: int, **kwargs):
content = self.context.get('content', '').split(splitter)
# 不保存content全部内容因为content内容可能会很大
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'type': self.node.type,
'content': [file_content[:500] for file_content in content],
'status': self.status,
'err_message': self.err_message,
'document_list': self.context.get('document_list')
}

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py.py
@date2024/11/4 14:48
@desc:
"""
from .impl import *

View File

@ -1,35 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file i_form_node.py
@date2024/11/4 14:48
@desc:
"""
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class FormNodeParamsSerializer(serializers.Serializer):
form_field_list = serializers.ListField(required=True, error_messages=ErrMessage.list(_("Form Configuration")))
form_content_format = serializers.CharField(required=True, error_messages=ErrMessage.char(_('Form output content')))
form_data = serializers.DictField(required=False, allow_null=True, error_messages=ErrMessage.dict(_("Form Data")))
class IFormNode(INode):
type = 'form-node'
view_type = 'single_view'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return FormNodeParamsSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, form_field_list, form_content_format, form_data, **kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py.py
@date2024/11/4 14:49
@desc:
"""
from .base_form_node import BaseFormNode

View File

@ -1,107 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file base_form_node.py
@date2024/11/4 14:52
@desc:
"""
import json
import time
from typing import Dict, List
from langchain_core.prompts import PromptTemplate
from application.flow.common import Answer
from application.flow.i_step_node import NodeResult
from application.flow.step_node.form_node.i_form_node import IFormNode
def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'result' in step_variable:
result = step_variable['result']
yield result
node.answer_text = result
node.context['run_time'] = time.time() - node.context['start_time']
class BaseFormNode(IFormNode):
def save_context(self, details, workflow_manage):
form_data = details.get('form_data', None)
self.context['result'] = details.get('result')
self.context['form_content_format'] = details.get('form_content_format')
self.context['form_field_list'] = details.get('form_field_list')
self.context['run_time'] = details.get('run_time')
self.context['start_time'] = details.get('start_time')
self.context['form_data'] = form_data
self.context['is_submit'] = details.get('is_submit')
if self.node_params.get('is_result', False):
self.answer_text = details.get('result')
if form_data is not None:
for key in form_data:
self.context[key] = form_data[key]
def execute(self, form_field_list, form_content_format, form_data, **kwargs) -> NodeResult:
if form_data is not None:
self.context['is_submit'] = True
self.context['form_data'] = form_data
for key in form_data:
self.context[key] = form_data.get(key)
else:
self.context['is_submit'] = False
form_setting = {"form_field_list": form_field_list, "runtime_node_id": self.runtime_node_id,
"chat_record_id": self.flow_params_serializer.data.get("chat_record_id"),
"is_submit": self.context.get("is_submit", False)}
form = f'<form_rander>{json.dumps(form_setting, ensure_ascii=False)}</form_rander>'
context = self.workflow_manage.get_workflow_content()
form_content_format = self.workflow_manage.reset_prompt(form_content_format)
prompt_template = PromptTemplate.from_template(form_content_format, template_format='jinja2')
value = prompt_template.format(form=form, context=context)
return NodeResult(
{'result': value, 'form_field_list': form_field_list, 'form_content_format': form_content_format}, {},
_write_context=write_context)
def get_answer_list(self) -> List[Answer] | None:
form_content_format = self.context.get('form_content_format')
form_field_list = self.context.get('form_field_list')
form_setting = {"form_field_list": form_field_list, "runtime_node_id": self.runtime_node_id,
"chat_record_id": self.flow_params_serializer.data.get("chat_record_id"),
'form_data': self.context.get('form_data', {}),
"is_submit": self.context.get("is_submit", False)}
form = f'<form_rander>{json.dumps(form_setting, ensure_ascii=False)}</form_rander>'
context = self.workflow_manage.get_workflow_content()
form_content_format = self.workflow_manage.reset_prompt(form_content_format)
prompt_template = PromptTemplate.from_template(form_content_format, template_format='jinja2')
value = prompt_template.format(form=form, context=context)
return [Answer(value, self.view_type, self.runtime_node_id, self.workflow_params['chat_record_id'], None,
self.runtime_node_id, '')]
def get_details(self, index: int, **kwargs):
form_content_format = self.context.get('form_content_format')
form_field_list = self.context.get('form_field_list')
form_setting = {"form_field_list": form_field_list, "runtime_node_id": self.runtime_node_id,
"chat_record_id": self.flow_params_serializer.data.get("chat_record_id"),
'form_data': self.context.get('form_data', {}),
"is_submit": self.context.get("is_submit", False)}
form = f'<form_rander>{json.dumps(form_setting, ensure_ascii=False)}</form_rander>'
context = self.workflow_manage.get_workflow_content()
form_content_format = self.workflow_manage.reset_prompt(form_content_format)
prompt_template = PromptTemplate.from_template(form_content_format, template_format='jinja2')
value = prompt_template.format(form=form, context=context)
return {
'name': self.node.properties.get('stepName'),
"index": index,
"result": value,
"form_content_format": self.context.get('form_content_format'),
"form_field_list": self.context.get('form_field_list'),
'form_data': self.context.get('form_data'),
'start_time': self.context.get('start_time'),
'is_submit': self.context.get('is_submit'),
'run_time': self.context.get('run_time'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message
}

View File

@ -15,24 +15,23 @@ from application.flow.i_step_node import INode, NodeResult
from common.field.common import ObjectField
from common.util.field_message import ErrMessage
from function_lib.models.function import FunctionLib
from django.utils.translation import gettext_lazy as _
class InputField(serializers.Serializer):
name = serializers.CharField(required=True, error_messages=ErrMessage.char(_('Variable Name')))
value = ObjectField(required=True, error_messages=ErrMessage.char(_("Variable Value")), model_type_list=[str, list])
name = serializers.CharField(required=True, error_messages=ErrMessage.char('变量名'))
value = ObjectField(required=True, error_messages=ErrMessage.char("变量值"), model_type_list=[str, list])
class FunctionLibNodeParamsSerializer(serializers.Serializer):
function_lib_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('Library ID')))
function_lib_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid('函数库id'))
input_field_list = InputField(required=True, many=True)
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean('是否返回内容'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
f_lib = QuerySet(FunctionLib).filter(id=self.data.get('function_lib_id')).first()
if f_lib is None:
raise Exception(_('The function has been deleted'))
raise Exception('函数库已被删除')
class IFunctionLibNode(INode):

View File

@ -11,13 +11,11 @@ import time
from typing import Dict
from django.db.models import QuerySet
from django.utils.translation import gettext as _
from application.flow.i_step_node import NodeResult
from application.flow.step_node.function_lib_node.i_function_lib_node import IFunctionLibNode
from common.exception.app_exception import AppApiException
from common.util.function_code import FunctionExecutor
from common.util.rsa_util import rsa_long_decrypt
from function_lib.models.function import FunctionLib
from smartdoc.const import CONFIG
@ -28,10 +26,10 @@ def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'result' in step_variable:
if workflow.is_result() and 'result' in step_variable:
result = str(step_variable['result']) + '\n'
yield result
node.answer_text = result
workflow.answer += result
node.context['run_time'] = time.time() - node.context['start_time']
@ -40,15 +38,15 @@ def get_field_value(debug_field_list, name, is_required):
if len(result) > 0:
return result[-1]['value']
if is_required:
raise AppApiException(500, _('Field: {name} No value set').format(name=name))
raise AppApiException(500, f"{name}字段未设置值")
return None
def valid_reference_value(_type, value, name):
if _type == 'int':
instance_type = int | float
instance_type = int
elif _type == 'float':
instance_type = float | int
instance_type = float
elif _type == 'dict':
instance_type = dict
elif _type == 'array':
@ -56,28 +54,19 @@ def valid_reference_value(_type, value, name):
elif _type == 'string':
instance_type = str
else:
raise Exception(_('Field: {name} Type: {_type} Value: {value} Unsupported types').format(name=name,
_type=_type))
raise Exception(500, f'字段:{name}类型:{_type} 不支持的类型')
if not isinstance(value, instance_type):
raise Exception(
_('Field: {name} Type: {_type} Value: {value} Type error').format(name=name, _type=_type,
value=value))
raise Exception(f'字段:{name}类型:{_type}值:{value}类型错误')
def convert_value(name: str, value, _type, is_required, source, node):
if not is_required and (value is None or (isinstance(value, str) and len(value) == 0)):
return None
if not is_required and source == 'reference' and (value is None or len(value) == 0):
if not is_required and value is None:
return None
if source == 'reference':
value = node.workflow_manage.get_reference_field(
value[0],
value[1:])
valid_reference_value(_type, value, name)
if _type == 'int':
return int(value)
if _type == 'float':
return float(value)
return value
try:
if _type == 'int':
@ -88,37 +77,20 @@ def convert_value(name: str, value, _type, is_required, source, node):
v = json.loads(value)
if isinstance(v, dict):
return v
raise Exception(_('type error'))
raise Exception("类型错误")
if _type == 'array':
v = json.loads(value)
if isinstance(v, list):
return v
raise Exception(_('type error'))
raise Exception("类型错误")
return value
except Exception as e:
raise Exception(
_('Field: {name} Type: {_type} Value: {value} Type error').format(name=name, _type=_type,
value=value))
def valid_function(function_lib, user_id):
if function_lib is None:
raise Exception(_('Function does not exist'))
if function_lib.permission_type == 'PRIVATE' and str(function_lib.user_id) != str(user_id):
raise Exception(_('No permission to use this function {name}').format(name=function_lib.name))
if not function_lib.is_active:
raise Exception(_('Function {name} is unavailable').format(name=function_lib.name))
raise Exception(f'字段:{name}类型:{_type}值:{value}类型错误')
class BaseFunctionLibNodeNode(IFunctionLibNode):
def save_context(self, details, workflow_manage):
self.context['result'] = details.get('result')
if self.node_params.get('is_result'):
self.answer_text = str(details.get('result'))
def execute(self, function_lib_id, input_field_list, **kwargs) -> NodeResult:
function_lib = QuerySet(FunctionLib).filter(id=function_lib_id).first()
valid_function(function_lib, self.flow_params_serializer.data.get('user_id'))
params = {field.get('name'): convert_value(field.get('name'), field.get('value'), field.get('type'),
field.get('is_required'),
field.get('source'), self)
@ -127,14 +99,8 @@ class BaseFunctionLibNodeNode(IFunctionLibNode):
), **field}
for field in
function_lib.input_field_list]}
self.context['params'] = params
# 合并初始化参数
if function_lib.init_params is not None:
all_params = json.loads(rsa_long_decrypt(function_lib.init_params)) | params
else:
all_params = params
result = function_executor.exec_code(function_lib.code, all_params)
result = function_executor.exec_code(function_lib.code, params)
return NodeResult({'result': result}, {}, _write_context=write_context)
def get_details(self, index: int, **kwargs):

View File

@ -16,35 +16,32 @@ from application.flow.i_step_node import INode, NodeResult
from common.exception.app_exception import AppApiException
from common.field.common import ObjectField
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
from rest_framework.utils.formatting import lazy_format
class InputField(serializers.Serializer):
name = serializers.CharField(required=True, error_messages=ErrMessage.char(_('Variable Name')))
is_required = serializers.BooleanField(required=True, error_messages=ErrMessage.boolean(_("Is this field required")))
type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("type")), validators=[
name = serializers.CharField(required=True, error_messages=ErrMessage.char('变量名'))
is_required = serializers.BooleanField(required=True, error_messages=ErrMessage.boolean("是否必填"))
type = serializers.CharField(required=True, error_messages=ErrMessage.char("类型"), validators=[
validators.RegexValidator(regex=re.compile("^string|int|dict|array|float$"),
message=_("The field only supports string|int|dict|array|float"), code=500)
message="字段只支持string|int|dict|array|float", code=500)
])
source = serializers.CharField(required=True, error_messages=ErrMessage.char(_("source")), validators=[
source = serializers.CharField(required=True, error_messages=ErrMessage.char("来源"), validators=[
validators.RegexValidator(regex=re.compile("^custom|reference$"),
message=_("The field only supports custom|reference"), code=500)
message="字段只支持custom|reference", code=500)
])
value = ObjectField(required=True, error_messages=ErrMessage.char(_("Variable Value")), model_type_list=[str, list])
value = ObjectField(required=True, error_messages=ErrMessage.char("变量值"), model_type_list=[str, list])
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
is_required = self.data.get('is_required')
if is_required and self.data.get('value') is None:
message = lazy_format(_('{field}, this field is required.'), field=self.data.get("name"))
raise AppApiException(500, message)
raise AppApiException(500, f'{self.data.get("name")}必填')
class FunctionNodeParamsSerializer(serializers.Serializer):
input_field_list = InputField(required=True, many=True)
code = serializers.CharField(required=True, error_messages=ErrMessage.char(_("function")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
code = serializers.CharField(required=True, error_messages=ErrMessage.char("函数"))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean('是否返回内容'))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)

View File

@ -24,18 +24,18 @@ def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'result' in step_variable:
if workflow.is_result() and 'result' in step_variable:
result = str(step_variable['result']) + '\n'
yield result
node.answer_text = result
workflow.answer += result
node.context['run_time'] = time.time() - node.context['start_time']
def valid_reference_value(_type, value, name):
if _type == 'int':
instance_type = int | float
instance_type = int
elif _type == 'float':
instance_type = float | int
instance_type = float
elif _type == 'dict':
instance_type = dict
elif _type == 'array':
@ -49,17 +49,13 @@ def valid_reference_value(_type, value, name):
def convert_value(name: str, value, _type, is_required, source, node):
if not is_required and (value is None or (isinstance(value, str) and len(value) == 0)):
if not is_required and value is None:
return None
if source == 'reference':
value = node.workflow_manage.get_reference_field(
value[0],
value[1:])
valid_reference_value(_type, value, name)
if _type == 'int':
return int(value)
if _type == 'float':
return float(value)
return value
try:
if _type == 'int':
@ -82,11 +78,6 @@ def convert_value(name: str, value, _type, is_required, source, node):
class BaseFunctionNodeNode(IFunctionNode):
def save_context(self, details, workflow_manage):
self.context['result'] = details.get('result')
if self.node_params.get('is_result', False):
self.answer_text = str(details.get('result'))
def execute(self, input_field_list, code, **kwargs) -> NodeResult:
params = {field.get('name'): convert_value(field.get('name'), field.get('value'), field.get('type'),
field.get('is_required'), field.get('source'), self)

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,45 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ImageGenerateNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word (positive)")))
negative_prompt = serializers.CharField(required=False, error_messages=ErrMessage.char(_("Prompt word (negative)")),
allow_null=True, allow_blank=True, )
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=False, default=0,
error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
dialogue_type = serializers.CharField(required=False, default='NODE',
error_messages=ErrMessage.char(_("Conversation storage type")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
model_params_setting = serializers.JSONField(required=False, default=dict,
error_messages=ErrMessage.json(_("Model parameter settings")))
class IImageGenerateNode(INode):
type = 'image-generate-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ImageGenerateNodeSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, model_id, prompt, negative_prompt, dialogue_number, dialogue_type, history_chat_record, chat_id,
model_params_setting,
chat_record_id,
**kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_image_generate_node import BaseImageGenerateNode

View File

@ -1,122 +0,0 @@
# coding=utf-8
from functools import reduce
from typing import List
import requests
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from application.flow.i_step_node import NodeResult
from application.flow.step_node.image_generate_step_node.i_image_generate_node import IImageGenerateNode
from common.util.common import bytes_to_uploaded_file
from dataset.serializers.file_serializers import FileSerializer
from setting.models_provider.tools import get_model_instance_by_model_user_id
class BaseImageGenerateNode(IImageGenerateNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['question'] = details.get('question')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, model_id, prompt, negative_prompt, dialogue_number, dialogue_type, history_chat_record, chat_id,
model_params_setting,
chat_record_id,
**kwargs) -> NodeResult:
print(model_params_setting)
application = self.workflow_manage.work_flow_post_handler.chat_info.application
tti_model = get_model_instance_by_model_user_id(model_id, self.flow_params_serializer.data.get('user_id'),
**model_params_setting)
history_message = self.get_history_message(history_chat_record, dialogue_number)
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question
message_list = self.generate_message_list(question, history_message)
self.context['message_list'] = message_list
self.context['dialogue_type'] = dialogue_type
print(message_list)
image_urls = tti_model.generate_image(question, negative_prompt)
# 保存图片
file_urls = []
for image_url in image_urls:
file_name = 'generated_image.png'
file = bytes_to_uploaded_file(requests.get(image_url).content, file_name)
meta = {
'debug': False if application.id else True,
'chat_id': chat_id,
'application_id': str(application.id) if application.id else None,
}
file_url = FileSerializer(data={'file': file, 'meta': meta}).upload()
file_urls.append(file_url)
self.context['image_list'] = [{'file_id': path.split('/')[-1], 'url': path} for path in file_urls]
answer = ' '.join([f"![Image]({path})" for path in file_urls])
return NodeResult({'answer': answer, 'chat_model': tti_model, 'message_list': message_list,
'image': [{'file_id': path.split('/')[-1], 'url': path} for path in file_urls],
'history_message': history_message, 'question': question}, {})
def generate_history_ai_message(self, chat_record):
for val in chat_record.details.values():
if self.node.id == val['node_id'] and 'image_list' in val:
if val['dialogue_type'] == 'WORKFLOW':
return chat_record.get_ai_message()
image_list = val['image_list']
return AIMessage(content=[
*[{'type': 'image_url', 'image_url': {'url': f'{file_url}'}} for file_url in image_list]
])
return chat_record.get_ai_message()
def get_history_message(self, history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
[self.generate_history_human_message(history_chat_record[index]),
self.generate_history_ai_message(history_chat_record[index])]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
return history_message
def generate_history_human_message(self, chat_record):
for data in chat_record.details.values():
if self.node.id == data['node_id'] and 'image_list' in data:
image_list = data['image_list']
if len(image_list) == 0 or data['dialogue_type'] == 'WORKFLOW':
return HumanMessage(content=chat_record.problem_text)
return HumanMessage(content=data['question'])
return HumanMessage(content=chat_record.problem_text)
def generate_prompt_question(self, prompt):
return self.workflow_manage.generate_prompt(prompt)
def generate_message_list(self, question: str, history_message):
return [
*history_message,
question
]
@staticmethod
def reset_message_list(message_list: List[BaseMessage], answer_text):
result = [{'role': 'user' if isinstance(message, HumanMessage) else 'ai', 'content': message.content} for
message
in
message_list]
result.append({'role': 'ai', 'content': answer_text})
return result
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message,
'image_list': self.context.get('image_list'),
'dialogue_type': self.context.get('dialogue_type')
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,46 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ImageUnderstandNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
system = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Role Setting")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
dialogue_type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Conversation storage type")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
image_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("picture")))
model_params_setting = serializers.JSONField(required=False, default=dict,
error_messages=ErrMessage.json(_("Model parameter settings")))
class IImageUnderstandNode(INode):
type = 'image-understand-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ImageUnderstandNodeSerializer
def _run(self):
res = self.workflow_manage.get_reference_field(self.node_params_serializer.data.get('image_list')[0],
self.node_params_serializer.data.get('image_list')[1:])
return self.execute(image=res, **self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, model_id, system, prompt, dialogue_number, dialogue_type, history_chat_record, stream, chat_id,
model_params_setting,
chat_record_id,
image,
**kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_image_understand_node import BaseImageUnderstandNode

View File

@ -1,224 +0,0 @@
# coding=utf-8
import base64
import os
import time
from functools import reduce
from typing import List, Dict
from django.db.models import QuerySet
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage, AIMessage
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.image_understand_step_node.i_image_understand_node import IImageUnderstandNode
from dataset.models import File
from setting.models_provider.tools import get_model_instance_by_model_user_id
from imghdr import what
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str):
chat_model = node_variable.get('chat_model')
message_tokens = node_variable['usage_metadata']['output_tokens'] if 'usage_metadata' in node_variable else 0
answer_tokens = chat_model.get_num_tokens(answer)
node.context['message_tokens'] = message_tokens
node.context['answer_tokens'] = answer_tokens
node.context['answer'] = answer
node.context['history_message'] = node_variable['history_message']
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据 (流式)
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = ''
for chunk in response:
answer += chunk.content
yield chunk.content
_write_context(node_variable, workflow_variable, node, workflow, answer)
def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点实例对象
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = response.content
_write_context(node_variable, workflow_variable, node, workflow, answer)
def file_id_to_base64(file_id: str):
file = QuerySet(File).filter(id=file_id).first()
file_bytes = file.get_byte()
base64_image = base64.b64encode(file_bytes).decode("utf-8")
return [base64_image, what(None, file_bytes.tobytes())]
class BaseImageUnderstandNode(IImageUnderstandNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['question'] = details.get('question')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, model_id, system, prompt, dialogue_number, dialogue_type, history_chat_record, stream, chat_id,
model_params_setting,
chat_record_id,
image,
**kwargs) -> NodeResult:
# 处理不正确的参数
if image is None or not isinstance(image, list):
image = []
print(model_params_setting)
image_model = get_model_instance_by_model_user_id(model_id, self.flow_params_serializer.data.get('user_id'), **model_params_setting)
# 执行详情中的历史消息不需要图片内容
history_message = self.get_history_message_for_details(history_chat_record, dialogue_number)
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question.content
# 生成消息列表, 真实的history_message
message_list = self.generate_message_list(image_model, system, prompt,
self.get_history_message(history_chat_record, dialogue_number), image)
self.context['message_list'] = message_list
self.context['image_list'] = image
self.context['dialogue_type'] = dialogue_type
if stream:
r = image_model.stream(message_list)
return NodeResult({'result': r, 'chat_model': image_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context_stream)
else:
r = image_model.invoke(message_list)
return NodeResult({'result': r, 'chat_model': image_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context)
def get_history_message_for_details(self, history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
[self.generate_history_human_message_for_details(history_chat_record[index]),
self.generate_history_ai_message(history_chat_record[index])]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
return history_message
def generate_history_ai_message(self, chat_record):
for val in chat_record.details.values():
if self.node.id == val['node_id'] and 'image_list' in val:
if val['dialogue_type'] == 'WORKFLOW':
return chat_record.get_ai_message()
return AIMessage(content=val['answer'])
return chat_record.get_ai_message()
def generate_history_human_message_for_details(self, chat_record):
for data in chat_record.details.values():
if self.node.id == data['node_id'] and 'image_list' in data:
image_list = data['image_list']
if len(image_list) == 0 or data['dialogue_type'] == 'WORKFLOW':
return HumanMessage(content=chat_record.problem_text)
file_id_list = [image.get('file_id') for image in image_list]
return HumanMessage(content=[
{'type': 'text', 'text': data['question']},
*[{'type': 'image_url', 'image_url': {'url': f'/api/file/{file_id}'}} for file_id in file_id_list]
])
return HumanMessage(content=chat_record.problem_text)
def get_history_message(self, history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
[self.generate_history_human_message(history_chat_record[index]),
self.generate_history_ai_message(history_chat_record[index])]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
return history_message
def generate_history_human_message(self, chat_record):
for data in chat_record.details.values():
if self.node.id == data['node_id'] and 'image_list' in data:
image_list = data['image_list']
if len(image_list) == 0 or data['dialogue_type'] == 'WORKFLOW':
return HumanMessage(content=chat_record.problem_text)
image_base64_list = [file_id_to_base64(image.get('file_id')) for image in image_list]
return HumanMessage(
content=[
{'type': 'text', 'text': data['question']},
*[{'type': 'image_url', 'image_url': {'url': f'data:image/{base64_image[1]};base64,{base64_image[0]}'}} for
base64_image in image_base64_list]
])
return HumanMessage(content=chat_record.problem_text)
def generate_prompt_question(self, prompt):
return HumanMessage(self.workflow_manage.generate_prompt(prompt))
def generate_message_list(self, image_model, system: str, prompt: str, history_message, image):
if image is not None and len(image) > 0:
# 处理多张图片
images = []
for img in image:
file_id = img['file_id']
file = QuerySet(File).filter(id=file_id).first()
image_bytes = file.get_byte()
base64_image = base64.b64encode(image_bytes).decode("utf-8")
image_format = what(None, image_bytes.tobytes())
images.append({'type': 'image_url', 'image_url': {'url': f'data:image/{image_format};base64,{base64_image}'}})
messages = [HumanMessage(
content=[
{'type': 'text', 'text': self.workflow_manage.generate_prompt(prompt)},
*images
])]
else:
messages = [HumanMessage(self.workflow_manage.generate_prompt(prompt))]
if system is not None and len(system) > 0:
return [
SystemMessage(self.workflow_manage.generate_prompt(system)),
*history_message,
*messages
]
else:
return [
*history_message,
*messages
]
@staticmethod
def reset_message_list(message_list: List[BaseMessage], answer_text):
result = [{'role': 'user' if isinstance(message, HumanMessage) else 'ai', 'content': message.content} for
message
in
message_list]
result.append({'role': 'ai', 'content': answer_text})
return result
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'system': self.node_params.get('system'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message,
'image_list': self.context.get('image_list'),
'dialogue_type': self.context.get('dialogue_type')
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,35 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class McpNodeSerializer(serializers.Serializer):
mcp_servers = serializers.JSONField(required=True,
error_messages=ErrMessage.char(_("Mcp servers")))
mcp_server = serializers.CharField(required=True,
error_messages=ErrMessage.char(_("Mcp server")))
mcp_tool = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Mcp tool")))
tool_params = serializers.DictField(required=True,
error_messages=ErrMessage.char(_("Tool parameters")))
class IMcpNode(INode):
type = 'mcp-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return McpNodeSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, mcp_servers, mcp_server, mcp_tool, tool_params, **kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_mcp_node import BaseMcpNode

View File

@ -1,61 +0,0 @@
# coding=utf-8
import asyncio
import json
from typing import List
from langchain_mcp_adapters.client import MultiServerMCPClient
from application.flow.i_step_node import NodeResult
from application.flow.step_node.mcp_node.i_mcp_node import IMcpNode
class BaseMcpNode(IMcpNode):
def save_context(self, details, workflow_manage):
self.context['result'] = details.get('result')
self.context['tool_params'] = details.get('tool_params')
self.context['mcp_tool'] = details.get('mcp_tool')
if self.node_params.get('is_result', False):
self.answer_text = details.get('result')
def execute(self, mcp_servers, mcp_server, mcp_tool, tool_params, **kwargs) -> NodeResult:
servers = json.loads(mcp_servers)
params = json.loads(json.dumps(tool_params))
params = self.handle_variables(params)
async def call_tool(s, session, t, a):
async with MultiServerMCPClient(s) as client:
s = await client.sessions[session].call_tool(t, a)
return s
res = asyncio.run(call_tool(servers, mcp_server, mcp_tool, params))
return NodeResult(
{'result': [content.text for content in res.content], 'tool_params': params, 'mcp_tool': mcp_tool}, {})
def handle_variables(self, tool_params):
# 处理参数中的变量
for k, v in tool_params.items():
if type(v) == str:
tool_params[k] = self.workflow_manage.generate_prompt(tool_params[k])
if type(v) == dict:
self.handle_variables(v)
if (type(v) == list) and (type(v[0]) == str):
tool_params[k] = self.get_reference_content(v)
return tool_params
def get_reference_content(self, fields: List[str]):
return str(self.workflow_manage.get_reference_field(
fields[0],
fields[1:]))
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'status': self.status,
'err_message': self.err_message,
'type': self.node.type,
'mcp_tool': self.context.get('mcp_tool'),
'tool_params': self.context.get('tool_params'),
'result': self.context.get('result'),
}

View File

@ -12,19 +12,18 @@ from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class QuestionNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char("模型id"))
system = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Role Setting")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
error_messages=ErrMessage.char("角色设定"))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char("提示词"))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer("多轮对话数量"))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
model_params_setting = serializers.DictField(required=False, error_messages=ErrMessage.integer(_("Model parameter settings")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean('是否返回内容'))
model_params_setting = serializers.DictField(required=False, error_messages=ErrMessage.integer("模型参数相关设置"))
class IQuestionNode(INode):

View File

@ -6,7 +6,6 @@
@date2024/6/4 14:30
@desc:
"""
import re
import time
from functools import reduce
from typing import List, Dict
@ -32,8 +31,8 @@ def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, wo
node.context['history_message'] = node_variable['history_message']
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
if workflow.is_result():
workflow.answer += answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
@ -74,15 +73,6 @@ def get_default_model_params_setting(model_id):
class BaseQuestionNode(IQuestionNode):
def save_context(self, details, workflow_manage):
self.context['run_time'] = details.get('run_time')
self.context['question'] = details.get('question')
self.context['answer'] = details.get('answer')
self.context['message_tokens'] = details.get('message_tokens')
self.context['answer_tokens'] = details.get('answer_tokens')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, model_id, system, prompt, dialogue_number, history_chat_record, stream, chat_id, chat_record_id,
model_params_setting=None,
**kwargs) -> NodeResult:
@ -94,8 +84,6 @@ class BaseQuestionNode(IQuestionNode):
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question.content
system = self.workflow_manage.generate_prompt(system)
self.context['system'] = system
message_list = self.generate_message_list(system, prompt, history_message)
self.context['message_list'] = message_list
if stream:
@ -116,9 +104,6 @@ class BaseQuestionNode(IQuestionNode):
[history_chat_record[index].get_human_message(), history_chat_record[index].get_ai_message()]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
for message in history_message:
if isinstance(message.content, str):
message.content = re.sub('<form_rander>[\d\D]*?<\/form_rander>', '', message.content)
return history_message
def generate_prompt_question(self, prompt):
@ -145,7 +130,7 @@ class BaseQuestionNode(IQuestionNode):
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'system': self.context.get('system'),
'system': self.node_params.get('system'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py
@date2024/9/4 11:37
@desc:
"""
from .impl import *

View File

@ -1,60 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file i_reranker_node.py
@date2024/9/4 10:40
@desc:
"""
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class RerankerSettingSerializer(serializers.Serializer):
# 需要查询的条数
top_n = serializers.IntegerField(required=True,
error_messages=ErrMessage.integer(_("Reference segment number")))
# 相似度 0-1之间
similarity = serializers.FloatField(required=True, max_value=2, min_value=0,
error_messages=ErrMessage.float(_("Reference segment number")))
max_paragraph_char_number = serializers.IntegerField(required=True,
error_messages=ErrMessage.float(_("Maximum number of words in a quoted segment")))
class RerankerStepNodeSerializer(serializers.Serializer):
reranker_setting = RerankerSettingSerializer(required=True)
question_reference_address = serializers.ListField(required=True)
reranker_model_id = serializers.UUIDField(required=True)
reranker_reference_list = serializers.ListField(required=True, child=serializers.ListField(required=True))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
class IRerankerNode(INode):
type = 'reranker-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return RerankerStepNodeSerializer
def _run(self):
question = self.workflow_manage.get_reference_field(
self.node_params_serializer.data.get('question_reference_address')[0],
self.node_params_serializer.data.get('question_reference_address')[1:])
reranker_list = [self.workflow_manage.get_reference_field(
reference[0],
reference[1:]) for reference in
self.node_params_serializer.data.get('reranker_reference_list')]
return self.execute(**self.node_params_serializer.data, question=str(question),
reranker_list=reranker_list)
def execute(self, question, reranker_setting, reranker_list, reranker_model_id,
**kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py
@date2024/9/4 11:39
@desc:
"""
from .base_reranker_node import *

View File

@ -1,106 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file base_reranker_node.py
@date2024/9/4 11:41
@desc:
"""
from typing import List
from langchain_core.documents import Document
from application.flow.i_step_node import NodeResult
from application.flow.step_node.reranker_node.i_reranker_node import IRerankerNode
from setting.models_provider.tools import get_model_instance_by_model_user_id
def merge_reranker_list(reranker_list, result=None):
if result is None:
result = []
for document in reranker_list:
if isinstance(document, list):
merge_reranker_list(document, result)
elif isinstance(document, dict):
content = document.get('title', '') + document.get('content', '')
title = document.get("title")
dataset_name = document.get("dataset_name")
document_name = document.get('document_name')
result.append(
Document(page_content=str(document) if len(content) == 0 else content,
metadata={'title': title, 'dataset_name': dataset_name, 'document_name': document_name}))
else:
result.append(Document(page_content=str(document), metadata={}))
return result
def filter_result(document_list: List[Document], max_paragraph_char_number, top_n, similarity):
use_len = 0
result = []
for index in range(len(document_list)):
document = document_list[index]
if use_len >= max_paragraph_char_number or index >= top_n or document.metadata.get(
'relevance_score') < similarity:
break
content = document.page_content[0:max_paragraph_char_number - use_len]
use_len = use_len + len(content)
result.append({'page_content': content, 'metadata': document.metadata})
return result
def reset_result_list(result_list: List[Document], document_list: List[Document]):
r = []
document_list = document_list.copy()
for result in result_list:
filter_result_list = [document for document in document_list if document.page_content == result.page_content]
if len(filter_result_list) > 0:
item = filter_result_list[0]
document_list.remove(item)
r.append(Document(page_content=item.page_content,
metadata={**item.metadata, 'relevance_score': result.metadata.get('relevance_score')}))
else:
r.append(result)
return r
class BaseRerankerNode(IRerankerNode):
def save_context(self, details, workflow_manage):
self.context['document_list'] = details.get('document_list', [])
self.context['question'] = details.get('question')
self.context['run_time'] = details.get('run_time')
self.context['result_list'] = details.get('result_list')
self.context['result'] = details.get('result')
def execute(self, question, reranker_setting, reranker_list, reranker_model_id,
**kwargs) -> NodeResult:
documents = merge_reranker_list(reranker_list)
top_n = reranker_setting.get('top_n', 3)
self.context['document_list'] = [{'page_content': document.page_content, 'metadata': document.metadata} for
document in documents]
self.context['question'] = question
reranker_model = get_model_instance_by_model_user_id(reranker_model_id,
self.flow_params_serializer.data.get('user_id'),
top_n=top_n)
result = reranker_model.compress_documents(
documents,
question)
similarity = reranker_setting.get('similarity', 0.6)
max_paragraph_char_number = reranker_setting.get('max_paragraph_char_number', 5000)
result = reset_result_list(result, documents)
r = filter_result(result, max_paragraph_char_number, top_n, similarity)
return NodeResult({'result_list': r, 'result': ''.join([item.get('page_content') for item in r])}, {})
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'document_list': self.context.get('document_list'),
"question": self.context.get('question'),
'run_time': self.context.get('run_time'),
'type': self.node.type,
'reranker_setting': self.node_params_serializer.data.get('reranker_setting'),
'result_list': self.context.get('result_list'),
'result': self.context.get('result'),
'status': self.status,
'err_message': self.err_message
}

View File

@ -15,31 +15,30 @@ from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.common import flat_map
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class DatasetSettingSerializer(serializers.Serializer):
# 需要查询的条数
top_n = serializers.IntegerField(required=True,
error_messages=ErrMessage.integer(_("Reference segment number")))
error_messages=ErrMessage.integer("引用分段数"))
# 相似度 0-1之间
similarity = serializers.FloatField(required=True, max_value=2, min_value=0,
error_messages=ErrMessage.float(_('similarity')))
error_messages=ErrMessage.float("引用分段数"))
search_mode = serializers.CharField(required=True, validators=[
validators.RegexValidator(regex=re.compile("^embedding|keywords|blend$"),
message=_("The type only supports embedding|keywords|blend"), code=500)
], error_messages=ErrMessage.char(_("Retrieval Mode")))
message="类型只支持register|reset_password", code=500)
], error_messages=ErrMessage.char("检索模式"))
max_paragraph_char_number = serializers.IntegerField(required=True,
error_messages=ErrMessage.float(_("Maximum number of words in a quoted segment")))
error_messages=ErrMessage.float("最大引用分段字数"))
class SearchDatasetStepNodeSerializer(serializers.Serializer):
# 需要查询的数据集id列表
dataset_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("Dataset id list")))
error_messages=ErrMessage.list("数据集id列表"))
dataset_setting = DatasetSettingSerializer(required=True)
question_reference_address = serializers.ListField(required=True)
question_reference_address = serializers.ListField(required=True, )
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
@ -66,7 +65,7 @@ class ISearchDatasetStepNode(INode):
if self.flow_params_serializer.data.get('re_chat', False):
history_chat_record = self.flow_params_serializer.data.get('history_chat_record', [])
paragraph_id_list = [p.get('id') for p in flat_map(
[get_paragraph_list(chat_record, self.runtime_node_id) for chat_record in history_chat_record if
[get_paragraph_list(chat_record, self.node.id) for chat_record in history_chat_record if
chat_record.problem_text == question])]
exclude_paragraph_id_list = list(set(paragraph_id_list))

View File

@ -10,7 +10,7 @@ import os
from typing import List, Dict
from django.db.models import QuerySet
from django.db import connection
from application.flow.i_step_node import NodeResult
from application.flow.step_node.search_dataset_node.i_search_dataset_node import ISearchDatasetStepNode
from common.config.embedding_config import VectorStore
@ -37,29 +37,7 @@ def get_none_result(question):
'directly_return': ''}, {})
def reset_title(title):
if title is None or len(title.strip()) == 0:
return ""
else:
return f"#### {title}\n"
class BaseSearchDatasetNode(ISearchDatasetStepNode):
def save_context(self, details, workflow_manage):
result = details.get('paragraph_list', [])
dataset_setting = self.node_params_serializer.data.get('dataset_setting')
directly_return = '\n'.join(
[f"{paragraph.get('title', '')}:{paragraph.get('content')}" for paragraph in result if
paragraph.get('is_hit_handling_method')])
self.context['paragraph_list'] = result
self.context['question'] = details.get('question')
self.context['run_time'] = details.get('run_time')
self.context['is_hit_handling_method_list'] = [row for row in result if row.get('is_hit_handling_method')]
self.context['data'] = '\n'.join(
[f"{paragraph.get('title', '')}:{paragraph.get('content')}" for paragraph in
result])[0:dataset_setting.get('max_paragraph_char_number', 5000)]
self.context['directly_return'] = directly_return
def execute(self, dataset_id_list, dataset_setting, question,
exclude_paragraph_id_list=None,
**kwargs) -> NodeResult:
@ -77,8 +55,6 @@ class BaseSearchDatasetNode(ISearchDatasetStepNode):
embedding_list = vector.query(question, embedding_value, dataset_id_list, exclude_document_id_list,
exclude_paragraph_id_list, True, dataset_setting.get('top_n'),
dataset_setting.get('similarity'), SearchMode(dataset_setting.get('search_mode')))
# 手动关闭数据库连接
connection.close()
if embedding_list is None:
return get_none_result(question)
paragraph_list = self.list_paragraph(embedding_list, vector)
@ -86,13 +62,9 @@ class BaseSearchDatasetNode(ISearchDatasetStepNode):
result = sorted(result, key=lambda p: p.get('similarity'), reverse=True)
return NodeResult({'paragraph_list': result,
'is_hit_handling_method_list': [row for row in result if row.get('is_hit_handling_method')],
'data': '\n'.join(
[f"{reset_title(paragraph.get('title', ''))}{paragraph.get('content')}" for paragraph in
result])[0:dataset_setting.get('max_paragraph_char_number', 5000)],
'directly_return': '\n'.join(
[paragraph.get('content') for paragraph in
result if
paragraph.get('is_hit_handling_method')]),
'data': '\n'.join([paragraph.get('content') for paragraph in paragraph_list]),
'directly_return': '\n'.join([paragraph.get('content') for paragraph in result if
paragraph.get('is_hit_handling_method')]),
'question': question},
{})
@ -107,12 +79,7 @@ class BaseSearchDatasetNode(ISearchDatasetStepNode):
**paragraph,
'similarity': find_embedding.get('similarity'),
'is_hit_handling_method': find_embedding.get('similarity') > paragraph.get(
'directly_return_similarity') and paragraph.get('hit_handling_method') == 'directly_return',
'update_time': paragraph.get('update_time').strftime("%Y-%m-%d %H:%M:%S"),
'create_time': paragraph.get('create_time').strftime("%Y-%m-%d %H:%M:%S"),
'id': str(paragraph.get('id')),
'dataset_id': str(paragraph.get('dataset_id')),
'document_id': str(paragraph.get('document_id'))
'directly_return_similarity') and paragraph.get('hit_handling_method') == 'directly_return'
}
@staticmethod

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,38 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class SpeechToTextNodeSerializer(serializers.Serializer):
stt_model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
audio_list = serializers.ListField(required=True, error_messages=ErrMessage.list(_("The audio file cannot be empty")))
class ISpeechToTextNode(INode):
type = 'speech-to-text-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return SpeechToTextNodeSerializer
def _run(self):
res = self.workflow_manage.get_reference_field(self.node_params_serializer.data.get('audio_list')[0],
self.node_params_serializer.data.get('audio_list')[1:])
for audio in res:
if 'file_id' not in audio:
raise ValueError(_("Parameter value error: The uploaded audio lacks file_id, and the audio upload fails"))
return self.execute(audio=res, **self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, stt_model_id, chat_id,
audio,
**kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_speech_to_text_node import BaseSpeechToTextNode

View File

@ -1,72 +0,0 @@
# coding=utf-8
import os
import tempfile
import time
import io
from typing import List, Dict
from django.db.models import QuerySet
from pydub import AudioSegment
from concurrent.futures import ThreadPoolExecutor
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.speech_to_text_step_node.i_speech_to_text_node import ISpeechToTextNode
from common.util.common import split_and_transcribe, any_to_mp3
from dataset.models import File
from setting.models_provider.tools import get_model_instance_by_model_user_id
class BaseSpeechToTextNode(ISpeechToTextNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, stt_model_id, chat_id, audio, **kwargs) -> NodeResult:
stt_model = get_model_instance_by_model_user_id(stt_model_id, self.flow_params_serializer.data.get('user_id'))
audio_list = audio
self.context['audio_list'] = audio
def process_audio_item(audio_item, model):
file = QuerySet(File).filter(id=audio_item['file_id']).first()
# 根据file_name 吧文件转成mp3格式
file_format = file.file_name.split('.')[-1]
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_format}') as temp_file:
temp_file.write(file.get_byte().tobytes())
temp_file_path = temp_file.name
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_amr_file:
temp_mp3_path = temp_amr_file.name
any_to_mp3(temp_file_path, temp_mp3_path)
try:
transcription = split_and_transcribe(temp_mp3_path, model)
return {file.file_name: transcription}
finally:
os.remove(temp_file_path)
os.remove(temp_mp3_path)
def process_audio_items(audio_list, model):
with ThreadPoolExecutor(max_workers=5) as executor:
results = list(executor.map(lambda item: process_audio_item(item, model), audio_list))
return results
result = process_audio_items(audio_list, stt_model)
content = []
result_content = []
for item in result:
for key, value in item.items():
content.append(f'### {key}\n{value}')
result_content.append(value)
return NodeResult({'answer': '\n'.join(result_content), 'result': '\n'.join(result_content),
'content': content}, {})
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'answer': self.context.get('answer'),
'content': self.context.get('content'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message,
'audio_list': self.context.get('audio_list'),
}

View File

@ -6,6 +6,9 @@
@date2024/6/3 16:54
@desc:
"""
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
@ -13,6 +16,9 @@ from application.flow.i_step_node import INode, NodeResult
class IStarNode(INode):
type = 'start-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer] | None:
return None
def _run(self):
return self.execute(**self.flow_params_serializer.data)

View File

@ -8,74 +8,20 @@
"""
import time
from datetime import datetime
from typing import List, Type
from rest_framework import serializers
from application.flow.i_step_node import NodeResult
from application.flow.step_node.start_node.i_start_node import IStarNode
def get_default_global_variable(input_field_list: List):
return {item.get('variable'): item.get('default_value') for item in input_field_list if
item.get('default_value', None) is not None}
def get_global_variable(node):
history_chat_record = node.flow_params_serializer.data.get('history_chat_record', [])
history_context = [{'question': chat_record.problem_text, 'answer': chat_record.answer_text} for chat_record in
history_chat_record]
chat_id = node.flow_params_serializer.data.get('chat_id')
return {'time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'start_time': time.time(),
'history_context': history_context, 'chat_id': str(chat_id), **node.workflow_manage.form_data}
class BaseStartStepNode(IStarNode):
def save_context(self, details, workflow_manage):
base_node = self.workflow_manage.get_base_node()
default_global_variable = get_default_global_variable(base_node.properties.get('input_field_list', []))
workflow_variable = {**default_global_variable, **get_global_variable(self)}
self.context['question'] = details.get('question')
self.context['run_time'] = details.get('run_time')
self.context['document'] = details.get('document_list')
self.context['image'] = details.get('image_list')
self.context['audio'] = details.get('audio_list')
self.context['other'] = details.get('other_list')
self.status = details.get('status')
self.err_message = details.get('err_message')
for key, value in workflow_variable.items():
workflow_manage.context[key] = value
for item in details.get('global_fields', []):
workflow_manage.context[item.get('key')] = item.get('value')
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
pass
def execute(self, question, **kwargs) -> NodeResult:
base_node = self.workflow_manage.get_base_node()
default_global_variable = get_default_global_variable(base_node.properties.get('input_field_list', []))
workflow_variable = {**default_global_variable, **get_global_variable(self)}
"""
开始节点 初始化全局变量
"""
node_variable = {
'question': question,
'image': self.workflow_manage.image_list,
'document': self.workflow_manage.document_list,
'audio': self.workflow_manage.audio_list,
'other': self.workflow_manage.other_list,
}
return NodeResult(node_variable, workflow_variable)
return NodeResult({'question': question},
{'time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'start_time': time.time()})
def get_details(self, index: int, **kwargs):
global_fields = []
for field in self.node.properties.get('config')['globalFields']:
key = field['value']
global_fields.append({
'label': field['label'],
'key': key,
'value': self.workflow_manage.context[key] if key in self.workflow_manage.context else ''
})
return {
'name': self.node.properties.get('stepName'),
"index": index,
@ -83,10 +29,5 @@ class BaseStartStepNode(IStarNode):
'run_time': self.context.get('run_time'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message,
'image_list': self.context.get('image'),
'document_list': self.context.get('document'),
'audio_list': self.context.get('audio'),
'other_list': self.context.get('other'),
'global_fields': global_fields
'err_message': self.err_message
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,36 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class TextToSpeechNodeSerializer(serializers.Serializer):
tts_model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
content_list = serializers.ListField(required=True, error_messages=ErrMessage.list(_("Text content")))
model_params_setting = serializers.DictField(required=False,
error_messages=ErrMessage.integer(_("Model parameter settings")))
class ITextToSpeechNode(INode):
type = 'text-to-speech-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return TextToSpeechNodeSerializer
def _run(self):
content = self.workflow_manage.get_reference_field(self.node_params_serializer.data.get('content_list')[0],
self.node_params_serializer.data.get('content_list')[1:])
return self.execute(content=content, **self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, tts_model_id, chat_id,
content, model_params_setting=None,
**kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_text_to_speech_node import BaseTextToSpeechNode

View File

@ -1,76 +0,0 @@
# coding=utf-8
import io
import mimetypes
from django.core.files.uploadedfile import InMemoryUploadedFile
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.image_understand_step_node.i_image_understand_node import IImageUnderstandNode
from application.flow.step_node.text_to_speech_step_node.i_text_to_speech_node import ITextToSpeechNode
from dataset.models import File
from dataset.serializers.file_serializers import FileSerializer
from setting.models_provider.tools import get_model_instance_by_model_user_id
def bytes_to_uploaded_file(file_bytes, file_name="generated_audio.mp3"):
content_type, _ = mimetypes.guess_type(file_name)
if content_type is None:
# 如果未能识别,设置为默认的二进制文件类型
content_type = "application/octet-stream"
# 创建一个内存中的字节流对象
file_stream = io.BytesIO(file_bytes)
# 获取文件大小
file_size = len(file_bytes)
uploaded_file = InMemoryUploadedFile(
file=file_stream,
field_name=None,
name=file_name,
content_type=content_type,
size=file_size,
charset=None,
)
return uploaded_file
class BaseTextToSpeechNode(ITextToSpeechNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
if self.node_params.get('is_result', False):
self.answer_text = details.get('answer')
def execute(self, tts_model_id, chat_id,
content, model_params_setting=None,
**kwargs) -> NodeResult:
self.context['content'] = content
model = get_model_instance_by_model_user_id(tts_model_id, self.flow_params_serializer.data.get('user_id'),
**model_params_setting)
audio_byte = model.text_to_speech(content)
# 需要把这个音频文件存储到数据库中
file_name = 'generated_audio.mp3'
file = bytes_to_uploaded_file(audio_byte, file_name)
application = self.workflow_manage.work_flow_post_handler.chat_info.application
meta = {
'debug': False if application.id else True,
'chat_id': chat_id,
'application_id': str(application.id) if application.id else None,
}
file_url = FileSerializer(data={'file': file, 'meta': meta}).upload()
# 拼接一个audio标签的src属性
audio_label = f'<audio src="{file_url}" controls style = "width: 300px; height: 43px"></audio>'
file_id = file_url.split('/')[-1]
audio_list = [{'file_id': file_id, 'file_name': file_name, 'url': file_url}]
return NodeResult({'answer': audio_label, 'result': audio_list}, {})
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'type': self.node.type,
'status': self.status,
'content': self.context.get('content'),
'err_message': self.err_message,
'answer': self.context.get('answer'),
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,27 +0,0 @@
# coding=utf-8
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
class VariableAssignNodeParamsSerializer(serializers.Serializer):
variable_list = serializers.ListField(required=True,
error_messages=ErrMessage.list(_("Reference Field")))
class IVariableAssignNode(INode):
type = 'variable-assign-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return VariableAssignNodeParamsSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, variable_list, stream, **kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py
@date2024/6/11 17:49
@desc:
"""
from .base_variable_assign_node import *

View File

@ -1,65 +0,0 @@
# coding=utf-8
import json
from typing import List
from application.flow.i_step_node import NodeResult
from application.flow.step_node.variable_assign_node.i_variable_assign_node import IVariableAssignNode
class BaseVariableAssignNode(IVariableAssignNode):
def save_context(self, details, workflow_manage):
self.context['variable_list'] = details.get('variable_list')
self.context['result_list'] = details.get('result_list')
def execute(self, variable_list, stream, **kwargs) -> NodeResult:
#
result_list = []
for variable in variable_list:
if 'fields' not in variable:
continue
if 'global' == variable['fields'][0]:
result = {
'name': variable['name'],
'input_value': self.get_reference_content(variable['fields']),
}
if variable['source'] == 'custom':
if variable['type'] == 'json':
if isinstance(variable['value'], dict) or isinstance(variable['value'], list):
val = variable['value']
else:
val = json.loads(variable['value'])
self.workflow_manage.context[variable['fields'][1]] = val
result['output_value'] = variable['value'] = val
elif variable['type'] == 'string':
# 变量解析 例如:{{global.xxx}}
val = self.workflow_manage.generate_prompt(variable['value'])
self.workflow_manage.context[variable['fields'][1]] = val
result['output_value'] = val
else:
val = variable['value']
self.workflow_manage.context[variable['fields'][1]] = val
result['output_value'] = val
else:
reference = self.get_reference_content(variable['reference'])
self.workflow_manage.context[variable['fields'][1]] = reference
result['output_value'] = reference
result_list.append(result)
return NodeResult({'variable_list': variable_list, 'result_list': result_list}, {})
def get_reference_content(self, fields: List[str]):
return str(self.workflow_manage.get_reference_field(
fields[0],
fields[1:]))
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'type': self.node.type,
'variable_list': self.context.get('variable_list'),
'result_list': self.context.get('result_list'),
'status': self.status,
'err_message': self.err_message
}

View File

@ -16,92 +16,6 @@ from application.flow.i_step_node import WorkFlowPostHandler
from common.response import result
class Reasoning:
def __init__(self, reasoning_content_start, reasoning_content_end):
self.content = ""
self.reasoning_content = ""
self.all_content = ""
self.reasoning_content_start_tag = reasoning_content_start
self.reasoning_content_end_tag = reasoning_content_end
self.reasoning_content_start_tag_len = len(
reasoning_content_start) if reasoning_content_start is not None else 0
self.reasoning_content_end_tag_len = len(reasoning_content_end) if reasoning_content_end is not None else 0
self.reasoning_content_end_tag_prefix = reasoning_content_end[
0] if self.reasoning_content_end_tag_len > 0 else ''
self.reasoning_content_is_start = False
self.reasoning_content_is_end = False
self.reasoning_content_chunk = ""
def get_end_reasoning_content(self):
if not self.reasoning_content_is_start and not self.reasoning_content_is_end:
r = {'content': self.all_content, 'reasoning_content': ''}
self.reasoning_content_chunk = ""
return r
if self.reasoning_content_is_start and not self.reasoning_content_is_end:
r = {'content': '', 'reasoning_content': self.reasoning_content_chunk}
self.reasoning_content_chunk = ""
return r
return {'content': '', 'reasoning_content': ''}
def get_reasoning_content(self, chunk):
# 如果没有开始思考过程标签那么就全是结果
if self.reasoning_content_start_tag is None or len(self.reasoning_content_start_tag) == 0:
self.content += chunk.content
return {'content': chunk.content, 'reasoning_content': ''}
# 如果没有结束思考过程标签那么就全部是思考过程
if self.reasoning_content_end_tag is None or len(self.reasoning_content_end_tag) == 0:
return {'content': '', 'reasoning_content': chunk.content}
self.all_content += chunk.content
if not self.reasoning_content_is_start and len(self.all_content) >= self.reasoning_content_start_tag_len:
if self.all_content.startswith(self.reasoning_content_start_tag):
self.reasoning_content_is_start = True
self.reasoning_content_chunk = self.all_content[self.reasoning_content_start_tag_len:]
else:
if not self.reasoning_content_is_end:
self.reasoning_content_is_end = True
self.content += self.all_content
return {'content': self.all_content, 'reasoning_content': ''}
else:
if self.reasoning_content_is_start:
self.reasoning_content_chunk += chunk.content
reasoning_content_end_tag_prefix_index = self.reasoning_content_chunk.find(
self.reasoning_content_end_tag_prefix)
if self.reasoning_content_is_end:
self.content += chunk.content
return {'content': chunk.content, 'reasoning_content': ''}
# 是否包含结束
if reasoning_content_end_tag_prefix_index > -1:
if len(self.reasoning_content_chunk) - reasoning_content_end_tag_prefix_index >= self.reasoning_content_end_tag_len:
reasoning_content_end_tag_index = self.reasoning_content_chunk.find(self.reasoning_content_end_tag)
if reasoning_content_end_tag_index > -1:
reasoning_content_chunk = self.reasoning_content_chunk[0:reasoning_content_end_tag_index]
content_chunk = self.reasoning_content_chunk[
reasoning_content_end_tag_index + self.reasoning_content_end_tag_len:]
self.reasoning_content += reasoning_content_chunk
self.content += content_chunk
self.reasoning_content_chunk = ""
self.reasoning_content_is_end = True
return {'content': content_chunk, 'reasoning_content': reasoning_content_chunk}
else:
reasoning_content_chunk = self.reasoning_content_chunk[0:reasoning_content_end_tag_prefix_index + 1]
self.reasoning_content_chunk = self.reasoning_content_chunk.replace(reasoning_content_chunk, '')
self.reasoning_content += reasoning_content_chunk
return {'content': '', 'reasoning_content': reasoning_content_chunk}
else:
return {'content': '', 'reasoning_content': ''}
else:
if self.reasoning_content_is_end:
self.content += chunk.content
return {'content': chunk.content, 'reasoning_content': ''}
else:
# aaa
result = {'content': '', 'reasoning_content': self.reasoning_content_chunk}
self.reasoning_content += self.reasoning_content_chunk
self.reasoning_content_chunk = ""
return result
def event_content(chat_id, chat_record_id, response, workflow,
write_context,
post_handler: WorkFlowPostHandler):

View File

@ -6,35 +6,23 @@
@date2024/1/9 17:40
@desc:
"""
import concurrent
import json
import threading
import traceback
from concurrent.futures import ThreadPoolExecutor
from functools import reduce
from typing import List, Dict
from django.db import close_old_connections
from django.db.models import QuerySet
from django.utils import translation
from django.utils.translation import get_language
from django.utils.translation import gettext as _
from langchain_core.messages import AIMessage
from langchain_core.prompts import PromptTemplate
from rest_framework import status
from rest_framework.exceptions import ErrorDetail, ValidationError
from application.flow import tools
from application.flow.i_step_node import INode, WorkFlowPostHandler, NodeResult
from application.flow.step_node import get_node
from common.exception.app_exception import AppApiException
from common.handle.base_to_response import BaseToResponse
from common.handle.impl.response.system_to_response import SystemToResponse
from function_lib.models.function import FunctionLib
from setting.models import Model
from setting.models_provider import get_model_credential
executor = ThreadPoolExecutor(max_workers=200)
class Edge:
def __init__(self, _id: str, _type: str, sourceNodeId: str, targetNodeId: str, **keywords):
@ -57,8 +45,7 @@ class Node:
self.__setattr__(keyword, kwargs.get(keyword))
end_nodes = ['ai-chat-node', 'reply-node', 'function-node', 'function-lib-node', 'application-node',
'image-understand-node', 'speech-to-text-node', 'text-to-speech-node', 'image-generate-node']
end_nodes = ['ai-chat-node', 'reply-node', 'function-node', 'function-lib-node']
class Flow:
@ -104,14 +91,18 @@ class Flow:
edge_list = [edge for edge in self.edges if edge.sourceAnchorId == source_anchor_id]
if len(edge_list) == 0:
raise AppApiException(500,
_('The branch {branch} of the {node} node needs to be connected').format(
node=node.properties.get("stepName"), branch=branch.get("type")))
f'{node.properties.get("stepName")} 节点的{branch.get("type")}分支需要连接')
elif len(edge_list) > 1:
raise AppApiException(500,
f'{node.properties.get("stepName")} 节点的{branch.get("type")}分支不能连接俩个节点')
else:
edge_list = [edge for edge in self.edges if edge.sourceNodeId == node.id]
if len(edge_list) == 0 and not end_nodes.__contains__(node.type):
raise AppApiException(500, _("{node} Nodes cannot be considered as end nodes").format(
node=node.properties.get("stepName")))
raise AppApiException(500, f'{node.properties.get("stepName")} 节点不能当做结束节点')
elif len(edge_list) > 1:
raise AppApiException(500,
f'{node.properties.get("stepName")} 节点不能连接俩个节点')
def get_next_nodes(self, node: Node):
edge_list = [edge for edge in self.edges if edge.sourceNodeId == node.id]
@ -120,7 +111,7 @@ class Flow:
[])
if len(node_list) == 0 and not end_nodes.__contains__(node.type):
raise AppApiException(500,
_("The next node that does not exist"))
f'不存在的下一个节点')
return node_list
def is_valid_work_flow(self, up_node=None):
@ -134,17 +125,16 @@ class Flow:
def is_valid_start_node(self):
start_node_list = [node for node in self.nodes if node.id == 'start-node']
if len(start_node_list) == 0:
raise AppApiException(500, _('The starting node is required'))
raise AppApiException(500, '开始节点必填')
if len(start_node_list) > 1:
raise AppApiException(500, _('There can only be one starting node'))
raise AppApiException(500, '开始节点只能有一个')
def is_valid_model_params(self):
node_list = [node for node in self.nodes if (node.type == 'ai-chat-node' or node.type == 'question-node')]
for node in node_list:
model = QuerySet(Model).filter(id=node.properties.get('node_data', {}).get('model_id')).first()
if model is None:
raise ValidationError(ErrorDetail(
_('The node {node} model does not exist').format(node=node.properties.get("stepName"))))
raise ValidationError(ErrorDetail(f'节点{node.properties.get("stepName")} 模型不存在'))
credential = get_model_credential(model.provider, model.model_type, model.model_name)
model_params_setting = node.properties.get('node_data', {}).get('model_params_setting')
model_params_setting_form = credential.get_model_params_setting_form(
@ -152,518 +142,141 @@ class Flow:
if model_params_setting is None:
model_params_setting = model_params_setting_form.get_default_form_data()
node.properties.get('node_data', {})['model_params_setting'] = model_params_setting
model_params_setting_form.valid_form(model_params_setting)
if node.properties.get('status', 200) != 200:
raise ValidationError(
ErrorDetail(_("Node {node} is unavailable").format(node.properties.get("stepName"))))
raise ValidationError(ErrorDetail(f'节点{node.properties.get("stepName")} 不可用'))
node_list = [node for node in self.nodes if (node.type == 'function-lib-node')]
for node in node_list:
function_lib_id = node.properties.get('node_data', {}).get('function_lib_id')
if function_lib_id is None:
raise ValidationError(ErrorDetail(
_('The library ID of node {node} cannot be empty').format(node=node.properties.get("stepName"))))
raise ValidationError(ErrorDetail(f'节点{node.properties.get("stepName")} 函数库id不能为空'))
f_lib = QuerySet(FunctionLib).filter(id=function_lib_id).first()
if f_lib is None:
raise ValidationError(ErrorDetail(_("The function library for node {node} is not available").format(
node=node.properties.get("stepName"))))
raise ValidationError(ErrorDetail(f'节点{node.properties.get("stepName")} 函数库不可用'))
def is_valid_base_node(self):
base_node_list = [node for node in self.nodes if node.id == 'base-node']
if len(base_node_list) == 0:
raise AppApiException(500, _('Basic information node is required'))
raise AppApiException(500, '基本信息节点必填')
if len(base_node_list) > 1:
raise AppApiException(500, _('There can only be one basic information node'))
class NodeResultFuture:
def __init__(self, r, e, status=200):
self.r = r
self.e = e
self.status = status
def result(self):
if self.status == 200:
return self.r
else:
raise self.e
def await_result(result, timeout=1):
try:
result.result(timeout)
return False
except Exception as e:
return True
class NodeChunkManage:
def __init__(self, work_flow):
self.node_chunk_list = []
self.current_node_chunk = None
self.work_flow = work_flow
def add_node_chunk(self, node_chunk):
self.node_chunk_list.append(node_chunk)
def contains(self, node_chunk):
return self.node_chunk_list.__contains__(node_chunk)
def pop(self):
if self.current_node_chunk is None:
try:
current_node_chunk = self.node_chunk_list.pop(0)
self.current_node_chunk = current_node_chunk
except IndexError as e:
pass
if self.current_node_chunk is not None:
try:
chunk = self.current_node_chunk.chunk_list.pop(0)
return chunk
except IndexError as e:
if self.current_node_chunk.is_end():
self.current_node_chunk = None
if self.work_flow.answer_is_not_empty():
chunk = self.work_flow.base_to_response.to_stream_chunk_response(
self.work_flow.params['chat_id'],
self.work_flow.params['chat_record_id'],
'\n\n', False, 0, 0)
self.work_flow.append_answer('\n\n')
return chunk
return self.pop()
return None
raise AppApiException(500, '基本信息节点只能有一个')
class WorkflowManage:
def __init__(self, flow: Flow, params, work_flow_post_handler: WorkFlowPostHandler,
base_to_response: BaseToResponse = SystemToResponse(), form_data=None, image_list=None,
document_list=None,
audio_list=None,
other_list=None,
start_node_id=None,
start_node_data=None, chat_record=None, child_node=None):
if form_data is None:
form_data = {}
if image_list is None:
image_list = []
if document_list is None:
document_list = []
if audio_list is None:
audio_list = []
if other_list is None:
other_list = []
self.start_node_id = start_node_id
self.start_node = None
self.form_data = form_data
self.image_list = image_list
self.document_list = document_list
self.audio_list = audio_list
self.other_list = other_list
def __init__(self, flow: Flow, params, work_flow_post_handler: WorkFlowPostHandler):
self.params = params
self.flow = flow
self.context = {}
self.node_chunk_manage = NodeChunkManage(self)
self.node_context = []
self.work_flow_post_handler = work_flow_post_handler
self.current_node = None
self.current_result = None
self.answer = ""
self.answer_list = ['']
self.status = 200
self.base_to_response = base_to_response
self.chat_record = chat_record
self.child_node = child_node
self.future_list = []
self.lock = threading.Lock()
self.field_list = []
self.global_field_list = []
self.init_fields()
if start_node_id is not None:
self.load_node(chat_record, start_node_id, start_node_data)
else:
self.node_context = []
def init_fields(self):
field_list = []
global_field_list = []
for node in self.flow.nodes:
properties = node.properties
node_name = properties.get('stepName')
node_id = node.id
node_config = properties.get('config')
if node_config is not None:
fields = node_config.get('fields')
if fields is not None:
for field in fields:
field_list.append({**field, 'node_id': node_id, 'node_name': node_name})
global_fields = node_config.get('globalFields')
if global_fields is not None:
for global_field in global_fields:
global_field_list.append({**global_field, 'node_id': node_id, 'node_name': node_name})
field_list.sort(key=lambda f: len(f.get('node_name')), reverse=True)
global_field_list.sort(key=lambda f: len(f.get('node_name')), reverse=True)
self.field_list = field_list
self.global_field_list = global_field_list
def append_answer(self, content):
self.answer += content
self.answer_list[-1] += content
def answer_is_not_empty(self):
return len(self.answer_list[-1]) > 0
def load_node(self, chat_record, start_node_id, start_node_data):
self.node_context = []
self.answer = chat_record.answer_text
self.answer_list = chat_record.answer_text_list
self.answer_list.append('')
for node_details in sorted(chat_record.details.values(), key=lambda d: d.get('index')):
node_id = node_details.get('node_id')
if node_details.get('runtime_node_id') == start_node_id:
def get_node_params(n):
is_result = False
if n.type == 'application-node':
is_result = True
return {**n.properties.get('node_data'), 'form_data': start_node_data, 'node_data': start_node_data,
'child_node': self.child_node, 'is_result': is_result}
self.start_node = self.get_node_cls_by_id(node_id, node_details.get('up_node_id_list'),
get_node_params=get_node_params)
self.start_node.valid_args(
{**self.start_node.node_params, 'form_data': start_node_data}, self.start_node.workflow_params)
if self.start_node.type == 'application-node':
application_node_dict = node_details.get('application_node_dict', {})
self.start_node.context['application_node_dict'] = application_node_dict
self.node_context.append(self.start_node)
continue
node_id = node_details.get('node_id')
node = self.get_node_cls_by_id(node_id, node_details.get('up_node_id_list'))
node.valid_args(node.node_params, node.workflow_params)
node.save_context(node_details, self)
node.node_chunk.end()
self.node_context.append(node)
def run(self):
close_old_connections()
language = get_language()
if self.params.get('stream'):
return self.run_stream(self.start_node, None, language)
return self.run_block(language)
return self.run_stream()
return self.run_block()
def run_block(self, language='zh'):
"""
非流式响应
@return: 结果
"""
self.run_chain_async(None, None, language)
while self.is_run():
pass
details = self.get_runtime_details()
message_tokens = sum([row.get('message_tokens') for row in details.values() if
'message_tokens' in row and row.get('message_tokens') is not None])
answer_tokens = sum([row.get('answer_tokens') for row in details.values() if
'answer_tokens' in row and row.get('answer_tokens') is not None])
answer_text_list = self.get_answer_text_list()
answer_text = '\n\n'.join(
'\n\n'.join([a.get('content') for a in answer]) for answer in
answer_text_list)
answer_list = reduce(lambda pre, _n: [*pre, *_n], answer_text_list, [])
self.work_flow_post_handler.handler(self.params['chat_id'], self.params['chat_record_id'],
answer_text,
self)
return self.base_to_response.to_block_response(self.params['chat_id'],
self.params['chat_record_id'], answer_text, True
, message_tokens, answer_tokens,
_status=status.HTTP_200_OK if self.status == 200 else status.HTTP_500_INTERNAL_SERVER_ERROR,
other_params={'answer_list': answer_list})
def run_stream(self, current_node, node_result_future, language='zh'):
"""
流式响应
@return:
"""
self.run_chain_async(current_node, node_result_future, language)
return tools.to_stream_response_simple(self.await_result())
def is_run(self, timeout=0.5):
future_list_len = len(self.future_list)
def run_block(self):
try:
r = concurrent.futures.wait(self.future_list, timeout)
if len(r.not_done) > 0:
return True
else:
if future_list_len == len(self.future_list):
return False
else:
return True
while self.has_next_node(self.current_result):
self.current_node = self.get_next_node()
self.current_node.valid_args(self.current_node.node_params, self.current_node.workflow_params)
self.node_context.append(self.current_node)
self.current_result = self.current_node.run()
result = self.current_result.write_context(self.current_node, self)
if result is not None:
list(result)
if not self.has_next_node(self.current_result):
return tools.to_response_simple(self.params['chat_id'], self.params['chat_record_id'],
AIMessage(self.answer), self,
self.work_flow_post_handler)
except Exception as e:
return True
return tools.to_response(self.params['chat_id'], self.params['chat_record_id'],
AIMessage(str(e)), self, self.current_node.get_write_error_context(e),
self.work_flow_post_handler)
def await_result(self):
def run_stream(self):
return tools.to_stream_response_simple(self.stream_event())
def stream_event(self):
try:
while self.is_run():
while True:
chunk = self.node_chunk_manage.pop()
if chunk is not None:
yield chunk
while self.has_next_node(self.current_result):
self.current_node = self.get_next_node()
self.node_context.append(self.current_node)
self.current_node.valid_args(self.current_node.node_params, self.current_node.workflow_params)
self.current_result = self.current_node.run()
result = self.current_result.write_context(self.current_node, self)
if result is not None:
if self.is_result():
for r in result:
yield self.get_chunk_content(r)
yield self.get_chunk_content('\n')
self.answer += '\n'
else:
break
while True:
chunk = self.node_chunk_manage.pop()
if chunk is None:
list(result)
if not self.has_next_node(self.current_result):
yield self.get_chunk_content('', True)
break
yield chunk
finally:
while self.is_run():
pass
details = self.get_runtime_details()
message_tokens = sum([row.get('message_tokens') for row in details.values() if
'message_tokens' in row and row.get('message_tokens') is not None])
answer_tokens = sum([row.get('answer_tokens') for row in details.values() if
'answer_tokens' in row and row.get('answer_tokens') is not None])
self.work_flow_post_handler.handler(self.params['chat_id'], self.params['chat_record_id'],
self.answer,
self)
yield self.base_to_response.to_stream_chunk_response(self.params['chat_id'],
self.params['chat_record_id'],
'',
[],
'', True, message_tokens, answer_tokens, {})
def run_chain_async(self, current_node, node_result_future, language='zh'):
future = executor.submit(self.run_chain_manage, current_node, node_result_future, language)
self.future_list.append(future)
def run_chain_manage(self, current_node, node_result_future, language='zh'):
translation.activate(language)
if current_node is None:
start_node = self.get_start_node()
current_node = get_node(start_node.type)(start_node, self.params, self)
self.node_chunk_manage.add_node_chunk(current_node.node_chunk)
# 添加节点
self.append_node(current_node)
result = self.run_chain(current_node, node_result_future)
if result is None:
return
node_list = self.get_next_node_list(current_node, result)
if len(node_list) == 1:
self.run_chain_manage(node_list[0], None, language)
elif len(node_list) > 1:
sorted_node_run_list = sorted(node_list, key=lambda n: n.node.y)
# 获取到可执行的子节点
result_list = [{'node': node, 'future': executor.submit(self.run_chain_manage, node, None, language)} for
node in
sorted_node_run_list]
for r in result_list:
self.future_list.append(r.get('future'))
def run_chain(self, current_node, node_result_future=None):
if node_result_future is None:
node_result_future = self.run_node_future(current_node)
try:
is_stream = self.params.get('stream', True)
result = self.hand_event_node_result(current_node,
node_result_future) if is_stream else self.hand_node_result(
current_node, node_result_future)
return result
except Exception as e:
traceback.print_exc()
return None
def hand_node_result(self, current_node, node_result_future):
try:
current_result = node_result_future.result()
result = current_result.write_context(current_node, self)
if result is not None:
# 阻塞获取结果
list(result)
return current_result
except Exception as e:
traceback.print_exc()
self.status = 500
current_node.get_write_error_context(e)
self.current_node.get_write_error_context(e)
self.answer += str(e)
finally:
current_node.node_chunk.end()
self.work_flow_post_handler.handler(self.params['chat_id'], self.params['chat_record_id'],
self.answer,
self)
yield self.get_chunk_content(str(e), True)
def append_node(self, current_node):
for index in range(len(self.node_context)):
n = self.node_context[index]
if current_node.id == n.node.id and current_node.runtime_node_id == n.runtime_node_id:
self.node_context[index] = current_node
return
self.node_context.append(current_node)
def hand_event_node_result(self, current_node, node_result_future):
runtime_node_id = current_node.runtime_node_id
real_node_id = current_node.runtime_node_id
child_node = {}
view_type = current_node.view_type
try:
current_result = node_result_future.result()
result = current_result.write_context(current_node, self)
if result is not None:
if self.is_result(current_node, current_result):
for r in result:
reasoning_content = ''
content = r
child_node = {}
node_is_end = False
view_type = current_node.view_type
if isinstance(r, dict):
content = r.get('content')
child_node = {'runtime_node_id': r.get('runtime_node_id'),
'chat_record_id': r.get('chat_record_id')
, 'child_node': r.get('child_node')}
if r.__contains__('real_node_id'):
real_node_id = r.get('real_node_id')
if r.__contains__('node_is_end'):
node_is_end = r.get('node_is_end')
view_type = r.get('view_type')
reasoning_content = r.get('reasoning_content')
chunk = self.base_to_response.to_stream_chunk_response(self.params['chat_id'],
self.params['chat_record_id'],
current_node.id,
current_node.up_node_id_list,
content, False, 0, 0,
{'node_type': current_node.type,
'runtime_node_id': runtime_node_id,
'view_type': view_type,
'child_node': child_node,
'node_is_end': node_is_end,
'real_node_id': real_node_id,
'reasoning_content': reasoning_content})
current_node.node_chunk.add_chunk(chunk)
chunk = (self.base_to_response
.to_stream_chunk_response(self.params['chat_id'],
self.params['chat_record_id'],
current_node.id,
current_node.up_node_id_list,
'', False, 0, 0, {'node_is_end': True,
'runtime_node_id': runtime_node_id,
'node_type': current_node.type,
'view_type': view_type,
'child_node': child_node,
'real_node_id': real_node_id,
'reasoning_content': ''}))
current_node.node_chunk.add_chunk(chunk)
else:
list(result)
return current_result
except Exception as e:
# 添加节点
traceback.print_exc()
chunk = self.base_to_response.to_stream_chunk_response(self.params['chat_id'],
self.params['chat_record_id'],
current_node.id,
current_node.up_node_id_list,
'Exception:' + str(e), False, 0, 0,
{'node_is_end': True,
'runtime_node_id': current_node.runtime_node_id,
'node_type': current_node.type,
'view_type': current_node.view_type,
'child_node': {},
'real_node_id': real_node_id})
current_node.node_chunk.add_chunk(chunk)
current_node.get_write_error_context(e)
self.status = 500
return None
finally:
current_node.node_chunk.end()
def run_node_async(self, node):
future = executor.submit(self.run_node, node)
return future
def run_node_future(self, node):
try:
node.valid_args(node.node_params, node.workflow_params)
result = self.run_node(node)
return NodeResultFuture(result, None, 200)
except Exception as e:
return NodeResultFuture(None, e, 500)
def run_node(self, node):
result = node.run()
return result
def is_result(self, current_node, current_node_result):
return current_node.node_params.get('is_result', not self._has_next_node(
current_node, current_node_result)) if current_node.node_params is not None else False
def is_result(self):
"""
判断是否是返回节点
@return:
"""
return self.current_node.node_params.get('is_result', not self.has_next_node(
self.current_result)) if self.current_node.node_params is not None else False
def get_chunk_content(self, chunk, is_end=False):
return 'data: ' + json.dumps(
{'chat_id': self.params['chat_id'], 'id': self.params['chat_record_id'], 'operate': True,
'content': chunk, 'is_end': is_end}, ensure_ascii=False) + "\n\n"
def _has_next_node(self, current_node, node_result: NodeResult | None):
"""
是否有下一个可运行的节点
"""
if node_result is not None and node_result.is_assertion_result():
for edge in self.flow.edges:
if (edge.sourceNodeId == current_node.id and
f"{edge.sourceNodeId}_{node_result.node_variable.get('branch_id')}_right" == edge.sourceAnchorId):
return True
else:
for edge in self.flow.edges:
if edge.sourceNodeId == current_node.id:
return True
def has_next_node(self, node_result: NodeResult | None):
"""
是否有下一个可运行的节点
"""
return self._has_next_node(self.get_start_node() if self.current_node is None else self.current_node,
node_result)
if self.current_node is None:
if self.get_start_node() is not None:
return True
else:
if node_result is not None and node_result.is_assertion_result():
for edge in self.flow.edges:
if (edge.sourceNodeId == self.current_node.id and
f"{edge.sourceNodeId}_{node_result.node_variable.get('branch_id')}_right" == edge.sourceAnchorId):
return True
else:
for edge in self.flow.edges:
if edge.sourceNodeId == self.current_node.id:
return True
return False
def get_runtime_details(self):
details_result = {}
for index in range(len(self.node_context)):
node = self.node_context[index]
if self.chat_record is not None and self.chat_record.details is not None:
details = self.chat_record.details.get(node.runtime_node_id)
if details is not None and self.start_node.runtime_node_id != node.runtime_node_id:
details_result[node.runtime_node_id] = details
continue
details = node.get_details(index)
details['node_id'] = node.id
details['up_node_id_list'] = node.up_node_id_list
details['runtime_node_id'] = node.runtime_node_id
details_result[node.runtime_node_id] = details
details_result[node.id] = details
return details_result
def get_answer_text_list(self):
result = []
answer_list = reduce(lambda x, y: [*x, *y],
[n.get_answer_list() for n in self.node_context if n.get_answer_list() is not None],
[])
up_node = None
for index in range(len(answer_list)):
current_answer = answer_list[index]
if len(current_answer.content) > 0:
if up_node is None or current_answer.view_type == 'single_view' or (
current_answer.view_type == 'many_view' and up_node.view_type == 'single_view'):
result.append([current_answer])
else:
if len(result) > 0:
exec_index = len(result) - 1
if isinstance(result[exec_index], list):
result[exec_index].append(current_answer)
else:
result.insert(0, [current_answer])
up_node = current_answer
if len(result) == 0:
# 如果没有响应 就响应一个空数据
return [[]]
return [[item.to_dict() for item in r] for r in result]
def get_next_node(self):
"""
获取下一个可运行的所有节点
"""
if self.current_node is None:
node = self.get_start_node()
node_instance = get_node(node.type)(node, self.params, self)
node_instance = get_node(node.type)(node, self.params, self.context)
return node_instance
if self.current_result is not None and self.current_result.is_assertion_result():
for edge in self.flow.edges:
@ -677,77 +290,9 @@ class WorkflowManage:
return None
@staticmethod
def dependent_node(up_node_id, node):
if not node.node_chunk.is_end():
return False
if node.id == up_node_id:
if node.type == 'form-node':
if node.context.get('form_data', None) is not None:
return True
return False
return True
def dependent_node_been_executed(self, node_id):
"""
判断依赖节点是否都已执行
@param node_id: 需要判断的节点id
@return:
"""
up_node_id_list = [edge.sourceNodeId for edge in self.flow.edges if edge.targetNodeId == node_id]
return all([any([self.dependent_node(up_node_id, node) for node in self.node_context]) for up_node_id in
up_node_id_list])
def get_up_node_id_list(self, node_id):
up_node_id_list = [edge.sourceNodeId for edge in self.flow.edges if edge.targetNodeId == node_id]
return up_node_id_list
def get_next_node_list(self, current_node, current_node_result):
"""
获取下一个可执行节点列表
@param current_node: 当前可执行节点
@param current_node_result: 当前可执行节点结果
@return: 可执行节点列表
"""
# 判断是否中断执行
if current_node_result.is_interrupt_exec(current_node):
return []
node_list = []
if current_node_result is not None and current_node_result.is_assertion_result():
for edge in self.flow.edges:
if (edge.sourceNodeId == current_node.id and
f"{edge.sourceNodeId}_{current_node_result.node_variable.get('branch_id')}_right" == edge.sourceAnchorId):
next_node = [node for node in self.flow.nodes if node.id == edge.targetNodeId]
if len(next_node) == 0:
continue
if next_node[0].properties.get('condition', "AND") == 'AND':
if self.dependent_node_been_executed(edge.targetNodeId):
node_list.append(
self.get_node_cls_by_id(edge.targetNodeId,
[*current_node.up_node_id_list, current_node.node.id]))
else:
node_list.append(
self.get_node_cls_by_id(edge.targetNodeId,
[*current_node.up_node_id_list, current_node.node.id]))
else:
for edge in self.flow.edges:
if edge.sourceNodeId == current_node.id:
next_node = [node for node in self.flow.nodes if node.id == edge.targetNodeId]
if len(next_node) == 0:
continue
if next_node[0].properties.get('condition', "AND") == 'AND':
if self.dependent_node_been_executed(edge.targetNodeId):
node_list.append(
self.get_node_cls_by_id(edge.targetNodeId,
[*current_node.up_node_id_list, current_node.node.id]))
else:
node_list.append(
self.get_node_cls_by_id(edge.targetNodeId,
[*current_node.up_node_id_list, current_node.node.id]))
return node_list
def get_reference_field(self, node_id: str, fields: List[str]):
"""
@param node_id: 节点id
@param fields: 字段
@return:
@ -757,37 +302,35 @@ class WorkflowManage:
else:
return self.get_node_by_id(node_id).get_reference_field(fields)
def get_workflow_content(self):
context = {
'global': self.context,
}
for node in self.node_context:
context[node.id] = node.context
return context
def reset_prompt(self, prompt: str):
placeholder = "{}"
for field in self.field_list:
globeLabel = f"{field.get('node_name')}.{field.get('value')}"
globeValue = f"context.get('{field.get('node_id')}',{placeholder}).get('{field.get('value', '')}','')"
prompt = prompt.replace(globeLabel, globeValue)
for field in self.global_field_list:
globeLabel = f"全局变量.{field.get('value')}"
globeLabelNew = f"global.{field.get('value')}"
globeValue = f"context.get('global').get('{field.get('value', '')}','')"
prompt = prompt.replace(globeLabel, globeValue).replace(globeLabelNew, globeValue)
return prompt
def generate_prompt(self, prompt: str):
"""
格式化生成提示词
@param prompt: 提示词信息
@return: 格式化后的提示词
"""
context = self.get_workflow_content()
prompt = self.reset_prompt(prompt)
context = {
'global': self.context,
}
for node in self.node_context:
properties = node.node.properties
node_config = properties.get('config')
if node_config is not None:
fields = node_config.get('fields')
if fields is not None:
for field in fields:
globeLabel = f"{properties.get('stepName')}.{field.get('value')}"
globeValue = f"context['{node.id}'].{field.get('value')}"
prompt = prompt.replace(globeLabel, globeValue)
global_fields = node_config.get('globalFields')
if global_fields is not None:
for field in global_fields:
globeLabel = f"全局变量.{field.get('value')}"
globeValue = f"context['global'].{field.get('value')}"
prompt = prompt.replace(globeLabel, globeValue)
context[node.id] = node.context
prompt_template = PromptTemplate.from_template(prompt, template_format='jinja2')
value = prompt_template.format(context=context)
return value
@ -799,20 +342,11 @@ class WorkflowManage:
start_node_list = [node for node in self.flow.nodes if node.type == 'start-node']
return start_node_list[0]
def get_base_node(self):
"""
获取基础节点
@return:
"""
base_node_list = [node for node in self.flow.nodes if node.type == 'base-node']
return base_node_list[0]
def get_node_cls_by_id(self, node_id, up_node_id_list=None,
get_node_params=lambda node: node.properties.get('node_data')):
def get_node_cls_by_id(self, node_id):
for node in self.flow.nodes:
if node.id == node_id:
node_instance = get_node(node.type)(node,
self.params, self, up_node_id_list, get_node_params)
self.params, self)
return node_instance
return None

View File

@ -1,11 +1,11 @@
# Generated by Django 4.2.13 on 2024-07-15 15:52
import application.models.application
from django.db import migrations, models
import common.encoder.encoder
class Migration(migrations.Migration):
dependencies = [
('application', '0009_application_type_application_work_flow_and_more'),
]
@ -14,6 +14,6 @@ class Migration(migrations.Migration):
migrations.AlterField(
model_name='chatrecord',
name='details',
field=models.JSONField(default=dict, encoder=common.encoder.encoder.SystemEncoder, verbose_name='对话详情'),
field=models.JSONField(default=dict, encoder=application.models.application.DateEncoder, verbose_name='对话详情'),
),
]

View File

@ -13,6 +13,6 @@ class Migration(migrations.Migration):
migrations.AddField(
model_name='application',
name='model_params_setting',
field=models.JSONField(default=dict, verbose_name='模型参数相关设置'),
field=models.JSONField(default={}, verbose_name='模型参数相关设置'),
),
]

View File

@ -1,35 +0,0 @@
# Generated by Django 4.2.15 on 2024-09-05 14:35
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('setting', '0006_alter_model_status'),
('application', '0011_application_model_params_setting'),
]
operations = [
migrations.AddField(
model_name='application',
name='stt_model',
field=models.ForeignKey(blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='stt_model_id', to='setting.model'),
),
migrations.AddField(
model_name='application',
name='stt_model_enable',
field=models.BooleanField(default=False, verbose_name='语音识别模型是否启用'),
),
migrations.AddField(
model_name='application',
name='tts_model',
field=models.ForeignKey(blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='tts_model_id', to='setting.model'),
),
migrations.AddField(
model_name='application',
name='tts_model_enable',
field=models.BooleanField(default=False, verbose_name='语音合成模型是否启用'),
),
]

View File

@ -1,18 +0,0 @@
# Generated by Django 4.2.15 on 2024-09-12 11:01
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('application', '0012_application_stt_model_application_stt_model_enable_and_more'),
]
operations = [
migrations.AddField(
model_name='application',
name='tts_type',
field=models.CharField(default='BROWSER', max_length=20, verbose_name='语音播放类型'),
),
]

View File

@ -1,18 +0,0 @@
# Generated by Django 4.2.15 on 2024-09-13 18:57
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('application', '0013_application_tts_type'),
]
operations = [
migrations.AddField(
model_name='application',
name='problem_optimization_prompt',
field=models.CharField(blank=True, default='()里面是用户问题,根据上下文回答揣测用户问题({question}) 要求: 输出一个补全问题,并且放在<data></data>标签中', max_length=102400, null=True, verbose_name='问题优化提示词'),
),
]

View File

@ -1,63 +0,0 @@
# Generated by Django 4.2.15 on 2024-09-18 16:14
import logging
import psycopg2
from django.db import migrations
from psycopg2 import extensions
from smartdoc.const import CONFIG
def get_connect(db_name):
conn_params = {
"dbname": db_name,
"user": CONFIG.get('DB_USER'),
"password": CONFIG.get('DB_PASSWORD'),
"host": CONFIG.get('DB_HOST'),
"port": CONFIG.get('DB_PORT')
}
# 建立连接
connect = psycopg2.connect(**conn_params)
return connect
def sql_execute(conn, reindex_sql: str, alter_database_sql: str):
"""
执行一条sql
@param reindex_sql:
@param conn:
@param alter_database_sql:
"""
conn.set_isolation_level(extensions.ISOLATION_LEVEL_AUTOCOMMIT)
with conn.cursor() as cursor:
cursor.execute(reindex_sql, [])
cursor.execute(alter_database_sql, [])
cursor.close()
def re_index(apps, schema_editor):
app_db_name = CONFIG.get('DB_NAME')
try:
re_index_database(app_db_name)
except Exception as e:
logging.error(f'reindex database {app_db_name}发送错误:{str(e)}')
try:
re_index_database('root')
except Exception as e:
logging.error(f'reindex database root 发送错误:{str(e)}')
def re_index_database(db_name):
db_conn = get_connect(db_name)
sql_execute(db_conn, f'REINDEX DATABASE "{db_name}";', f'ALTER DATABASE "{db_name}" REFRESH COLLATION VERSION;')
db_conn.close()
class Migration(migrations.Migration):
dependencies = [
('application', '0014_application_problem_optimization_prompt'),
]
operations = [
migrations.RunPython(re_index, atomic=False)
]

View File

@ -1,18 +0,0 @@
# Generated by Django 4.2.15 on 2024-09-26 13:19
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('application', '0015_re_database_index'),
]
operations = [
migrations.AlterField(
model_name='chatrecord',
name='problem_text',
field=models.CharField(max_length=10240, verbose_name='问题'),
),
]

Some files were not shown because too many files have changed in this diff Show More