fix: Model parameters are not effective (#2937)

This commit is contained in:
shaohuzhang1 2025-04-21 18:06:09 +08:00 committed by GitHub
parent 2550324003
commit d2637c3de2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
22 changed files with 164 additions and 142 deletions

View File

@ -106,7 +106,10 @@ class MaxKBBaseModel(ABC):
optional_params = {}
for key, value in model_kwargs.items():
if key not in ['model_id', 'use_local', 'streaming', 'show_ref_label']:
optional_params[key] = value
if key == 'extra_body' and isinstance(value, dict):
optional_params = {**optional_params, **value}
else:
optional_params[key] = value
return optional_params

View File

@ -15,9 +15,8 @@ class QwenVLChatModel(MaxKBBaseModel, BaseChatOpenAI):
model_name=model_name,
openai_api_key=model_credential.get('api_key'),
openai_api_base='https://dashscope.aliyuncs.com/compatible-mode/v1',
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)
return chat_tong_yi

View File

@ -20,5 +20,5 @@ class BaiLianChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
**optional_params
extra_body=optional_params
)

View File

@ -1,15 +1,16 @@
# coding=utf-8
import warnings
from typing import List, Dict, Optional, Any, Iterator, cast, Type, Union
from typing import Dict, Optional, Any, Iterator, cast, Union, Sequence, Callable, Mapping
import openai
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import LanguageModelInput
from langchain_core.messages import BaseMessage, get_buffer_string, BaseMessageChunk, AIMessageChunk
from langchain_core.outputs import ChatGenerationChunk, ChatGeneration
from langchain_core.messages import BaseMessage, get_buffer_string, BaseMessageChunk, HumanMessageChunk, AIMessageChunk, \
SystemMessageChunk, FunctionMessageChunk, ChatMessageChunk
from langchain_core.messages.ai import UsageMetadata
from langchain_core.messages.tool import tool_call_chunk, ToolMessageChunk
from langchain_core.outputs import ChatGenerationChunk
from langchain_core.runnables import RunnableConfig, ensure_config
from langchain_core.utils.pydantic import is_basemodel_subclass
from langchain_core.tools import BaseTool
from langchain_openai import ChatOpenAI
from langchain_openai.chat_models.base import _create_usage_metadata
from common.config.tokenizer_manage_config import TokenizerManage
@ -19,6 +20,64 @@ def custom_get_token_ids(text: str):
return tokenizer.encode(text)
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: type[BaseMessageChunk]
) -> BaseMessageChunk:
id_ = _dict.get("id")
reasoning_content = cast(str, _dict.get("reasoning_content") or "")
role = cast(str, _dict.get("role"))
content = cast(str, _dict.get("content") or "")
additional_kwargs: dict = {'reasoning_content': reasoning_content}
if _dict.get("function_call"):
function_call = dict(_dict["function_call"])
if "name" in function_call and function_call["name"] is None:
function_call["name"] = ""
additional_kwargs["function_call"] = function_call
tool_call_chunks = []
if raw_tool_calls := _dict.get("tool_calls"):
additional_kwargs["tool_calls"] = raw_tool_calls
try:
tool_call_chunks = [
tool_call_chunk(
name=rtc["function"].get("name"),
args=rtc["function"].get("arguments"),
id=rtc.get("id"),
index=rtc["index"],
)
for rtc in raw_tool_calls
]
except KeyError:
pass
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content, id=id_)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
id=id_,
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type]
)
elif role in ("system", "developer") or default_class == SystemMessageChunk:
if role == "developer":
additional_kwargs = {"__openai_role__": "developer"}
else:
additional_kwargs = {}
return SystemMessageChunk(
content=content, id=id_, additional_kwargs=additional_kwargs
)
elif role == "function" or default_class == FunctionMessageChunk:
return FunctionMessageChunk(content=content, name=_dict["name"], id=id_)
elif role == "tool" or default_class == ToolMessageChunk:
return ToolMessageChunk(
content=content, tool_call_id=_dict["tool_call_id"], id=id_
)
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role, id=id_)
else:
return default_class(content=content, id=id_) # type: ignore
class BaseChatOpenAI(ChatOpenAI):
usage_metadata: dict = {}
custom_get_token_ids = custom_get_token_ids
@ -26,7 +85,13 @@ class BaseChatOpenAI(ChatOpenAI):
def get_last_generation_info(self) -> Optional[Dict[str, Any]]:
return self.usage_metadata
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
def get_num_tokens_from_messages(
self,
messages: list[BaseMessage],
tools: Optional[
Sequence[Union[dict[str, Any], type, Callable, BaseTool]]
] = None,
) -> int:
if self.usage_metadata is None or self.usage_metadata == {}:
try:
return super().get_num_tokens_from_messages(messages)
@ -44,114 +109,77 @@ class BaseChatOpenAI(ChatOpenAI):
return len(tokenizer.encode(text))
return self.get_last_generation_info().get('output_tokens', 0)
def _stream(
def _stream(self, *args: Any, **kwargs: Any) -> Iterator[ChatGenerationChunk]:
kwargs['stream_usage'] = True
for chunk in super()._stream(*args, **kwargs):
if chunk.message.usage_metadata is not None:
self.usage_metadata = chunk.message.usage_metadata
yield chunk
def _convert_chunk_to_generation_chunk(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
kwargs["stream"] = True
kwargs["stream_options"] = {"include_usage": True}
"""Set default stream_options."""
stream_usage = self._should_stream_usage(kwargs.get('stream_usage'), **kwargs)
# Note: stream_options is not a valid parameter for Azure OpenAI.
# To support users proxying Azure through ChatOpenAI, here we only specify
# stream_options if include_usage is set to True.
# See https://learn.microsoft.com/en-us/azure/ai-services/openai/whats-new
# for release notes.
if stream_usage:
kwargs["stream_options"] = {"include_usage": stream_usage}
chunk: dict,
default_chunk_class: type,
base_generation_info: Optional[dict],
) -> Optional[ChatGenerationChunk]:
if chunk.get("type") == "content.delta": # from beta.chat.completions.stream
return None
token_usage = chunk.get("usage")
choices = (
chunk.get("choices", [])
# from beta.chat.completions.stream
or chunk.get("chunk", {}).get("choices", [])
)
payload = self._get_request_payload(messages, stop=stop, **kwargs)
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
base_generation_info = {}
if "response_format" in payload and is_basemodel_subclass(
payload["response_format"]
):
# TODO: Add support for streaming with Pydantic response_format.
warnings.warn("Streaming with Pydantic response_format not yet supported.")
chat_result = self._generate(
messages, stop, run_manager=run_manager, **kwargs
usage_metadata: Optional[UsageMetadata] = (
_create_usage_metadata(token_usage) if token_usage else None
)
if len(choices) == 0:
# logprobs is implicitly None
generation_chunk = ChatGenerationChunk(
message=default_chunk_class(content="", usage_metadata=usage_metadata)
)
msg = chat_result.generations[0].message
yield ChatGenerationChunk(
message=AIMessageChunk(
**msg.dict(exclude={"type", "additional_kwargs"}),
# preserve the "parsed" Pydantic object without converting to dict
additional_kwargs=msg.additional_kwargs,
),
generation_info=chat_result.generations[0].generation_info,
)
return
if self.include_response_headers:
raw_response = self.client.with_raw_response.create(**payload)
response = raw_response.parse()
base_generation_info = {"headers": dict(raw_response.headers)}
else:
response = self.client.create(**payload)
with response:
is_first_chunk = True
for chunk in response:
if not isinstance(chunk, dict):
chunk = chunk.model_dump()
return generation_chunk
generation_chunk = super()._convert_chunk_to_generation_chunk(
chunk,
default_chunk_class,
base_generation_info if is_first_chunk else {},
)
if generation_chunk is None:
continue
choice = choices[0]
if choice["delta"] is None:
return None
# custom code
if len(chunk['choices']) > 0 and 'reasoning_content' in chunk['choices'][0]['delta']:
generation_chunk.message.additional_kwargs["reasoning_content"] = chunk['choices'][0]['delta'][
'reasoning_content']
message_chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
generation_info = {**base_generation_info} if base_generation_info else {}
default_chunk_class = generation_chunk.message.__class__
logprobs = (generation_chunk.generation_info or {}).get("logprobs")
if run_manager:
run_manager.on_llm_new_token(
generation_chunk.text, chunk=generation_chunk, logprobs=logprobs
)
is_first_chunk = False
# custom code
if generation_chunk.message.usage_metadata is not None:
self.usage_metadata = generation_chunk.message.usage_metadata
yield generation_chunk
if finish_reason := choice.get("finish_reason"):
generation_info["finish_reason"] = finish_reason
if model_name := chunk.get("model"):
generation_info["model_name"] = model_name
if system_fingerprint := chunk.get("system_fingerprint"):
generation_info["system_fingerprint"] = system_fingerprint
def _create_chat_result(self,
response: Union[dict, openai.BaseModel],
generation_info: Optional[Dict] = None):
result = super()._create_chat_result(response, generation_info)
try:
reasoning_content = ''
reasoning_content_enable = False
for res in response.choices:
if 'reasoning_content' in res.message.model_extra:
reasoning_content_enable = True
_reasoning_content = res.message.model_extra.get('reasoning_content')
if _reasoning_content is not None:
reasoning_content += _reasoning_content
if reasoning_content_enable:
result.llm_output['reasoning_content'] = reasoning_content
except Exception as e:
pass
return result
logprobs = choice.get("logprobs")
if logprobs:
generation_info["logprobs"] = logprobs
if usage_metadata and isinstance(message_chunk, AIMessageChunk):
message_chunk.usage_metadata = usage_metadata
generation_chunk = ChatGenerationChunk(
message=message_chunk, generation_info=generation_info or None
)
return generation_chunk
def invoke(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
stop: Optional[list[str]] = None,
**kwargs: Any,
) -> BaseMessage:
config = ensure_config(config)
chat_result = cast(
ChatGeneration,
"ChatGeneration",
self.generate_prompt(
[self._convert_input(input)],
stop=stop,
@ -162,7 +190,9 @@ class BaseChatOpenAI(ChatOpenAI):
run_id=config.pop("run_id", None),
**kwargs,
).generations[0][0],
).message
self.usage_metadata = chat_result.response_metadata[
'token_usage'] if 'token_usage' in chat_result.response_metadata else chat_result.usage_metadata
return chat_result

View File

@ -26,6 +26,6 @@ class DeepSeekChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base='https://api.deepseek.com',
openai_api_key=model_credential.get('api_key'),
**optional_params
extra_body=optional_params
)
return deepseek_chat_open_ai

View File

@ -21,11 +21,10 @@ class KimiChatModel(MaxKBBaseModel, BaseChatOpenAI):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
kimi_chat_open_ai = KimiChatModel(
openai_api_base=model_credential['api_base'],
openai_api_key=model_credential['api_key'],
model_name=model_name,
**optional_params
extra_body=optional_params,
)
return kimi_chat_open_ai

View File

@ -28,5 +28,5 @@ class OllamaImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)

View File

@ -16,5 +16,5 @@ class OpenAIImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)

View File

@ -9,7 +9,6 @@
from typing import List, Dict
from langchain_core.messages import BaseMessage, get_buffer_string
from langchain_openai.chat_models import ChatOpenAI
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
@ -35,9 +34,9 @@ class OpenAIChatModel(MaxKBBaseModel, BaseChatOpenAI):
streaming = False
azure_chat_open_ai = OpenAIChatModel(
model=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
**optional_params,
base_url=model_credential.get('api_base'),
api_key=model_credential.get('api_key'),
extra_body=optional_params,
streaming=streaming,
custom_get_token_ids=custom_get_token_ids
)

View File

@ -18,9 +18,8 @@ class QwenVLChatModel(MaxKBBaseModel, BaseChatOpenAI):
model_name=model_name,
openai_api_key=model_credential.get('api_key'),
openai_api_base='https://dashscope.aliyuncs.com/compatible-mode/v1',
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)
return chat_tong_yi

View File

@ -26,6 +26,6 @@ class QwenChatModel(MaxKBBaseModel, BaseChatOpenAI):
openai_api_base='https://dashscope.aliyuncs.com/compatible-mode/v1',
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)
return chat_tong_yi

View File

@ -16,5 +16,5 @@ class SiliconCloudImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)

View File

@ -34,5 +34,5 @@ class SiliconCloudChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
**optional_params
extra_body=optional_params
)

View File

@ -33,21 +33,7 @@ class TencentCloudChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
**optional_params,
extra_body=optional_params,
custom_get_token_ids=custom_get_token_ids
)
return azure_chat_open_ai
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
try:
return super().get_num_tokens_from_messages(messages)
except Exception as e:
tokenizer = TokenizerManage.get_tokenizer()
return sum([len(tokenizer.encode(get_buffer_string([m]))) for m in messages])
def get_num_tokens(self, text: str) -> int:
try:
return super().get_num_tokens(text)
except Exception as e:
tokenizer = TokenizerManage.get_tokenizer()
return len(tokenizer.encode(text))

View File

@ -16,5 +16,5 @@ class TencentVision(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)

View File

@ -19,7 +19,7 @@ class VllmImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)
def is_cache_model(self):

View File

@ -1,9 +1,10 @@
# coding=utf-8
from typing import Dict, List
from typing import Dict, Optional, Sequence, Union, Any, Callable
from urllib.parse import urlparse, ParseResult
from langchain_core.messages import BaseMessage, get_buffer_string
from langchain_core.tools import BaseTool
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
@ -31,13 +32,19 @@ class VllmChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
**optional_params,
streaming=True,
stream_usage=True,
extra_body=optional_params
)
return vllm_chat_open_ai
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
def get_num_tokens_from_messages(
self,
messages: list[BaseMessage],
tools: Optional[
Sequence[Union[dict[str, Any], type, Callable, BaseTool]]
] = None,
) -> int:
if self.usage_metadata is None or self.usage_metadata == {}:
tokenizer = TokenizerManage.get_tokenizer()
return sum([len(tokenizer.encode(get_buffer_string([m]))) for m in messages])

View File

@ -16,5 +16,5 @@ class VolcanicEngineImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)

View File

@ -17,5 +17,5 @@ class VolcanicEngineChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
**optional_params
extra_body=optional_params
)

View File

@ -19,7 +19,7 @@ class XinferenceImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:

View File

@ -34,7 +34,7 @@ class XinferenceChatModel(MaxKBBaseModel, BaseChatOpenAI):
model=model_name,
openai_api_base=base_url,
openai_api_key=model_credential.get('api_key'),
**optional_params
extra_body=optional_params
)
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:

View File

@ -16,5 +16,5 @@ class ZhiPuImage(MaxKBBaseModel, BaseChatOpenAI):
# stream_options={"include_usage": True},
streaming=True,
stream_usage=True,
**optional_params,
extra_body=optional_params
)