This commit is contained in:
CaptainB 2025-04-11 15:47:59 +08:00
parent ce7efd4758
commit c78a6babb6
1302 changed files with 0 additions and 138431 deletions

View File

@ -1,2 +0,0 @@
.git*
.idea*

187
.gitignore vendored
View File

@ -1,187 +0,0 @@
# Mac
.DS_Store
*/.DS_Store
# VS Code
.vscode
*.project
*.factorypath
# IntelliJ IDEA
.idea/*
!.idea/icon.png
*.iws
*.iml
*.ipr
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script forms a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
ui/package-lock.json
ui/node_modules
ui/dist
apps/static
models/
apps/xpack
!apps/**/models/
data
.dev
poetry.lock
apps/setting/models_provider/impl/*/icon/
tmp/

View File

@ -1,4 +0,0 @@
[files]
extend-exclude = [
'apps/setting/models_provider/impl/*/icon/*'
]

View File

@ -1,128 +0,0 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
support@fit2cloud.com.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

View File

@ -1,30 +0,0 @@
# Contributing
As a contributor, you should agree that:
- The producer can adjust the open-source agreement to be more strict or relaxed as deemed necessary.
- Your contributed code may be used for commercial purposes, including but not limited to its cloud business operations.
## Create pull request
PR are always welcome, even if they only contain small fixes like typos or a few lines of code. If there will be a significant effort, please document it as an issue and get a discussion going before starting to work on it.
Please submit a PR broken down into small changes bit by bit. A PR consisting of a lot of features and code changes may be hard to review. It is recommended to submit PRs in an incremental fashion.
This [development guideline](https://github.com/1Panel-dev/MaxKB/wiki/3-%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83%E6%90%AD%E5%BB%BA) contains information about repository structure, how to set up development environment, how to run it, and more.
Note: If you split your pull request to small changes, please make sure any of the changes goes to master will not break anything. Otherwise, it can not be merged until this feature complete.
## Report issues
It is a great way to contribute by reporting an issue. Well-written and complete bug reports are always welcome! Please open an issue and follow the template to fill in required information.
Before opening any issue, please look up the existing issues to avoid submitting a duplication.
If you find a match, you can "subscribe" to it to get notified on updates. If you have additional helpful information about the issue, please leave a comment.
When reporting issues, always include:
* Which version you are using.
* Steps to reproduce the issue.
* Snapshots or log files if needed
Because the issues are open to the public, when submitting files, be sure to remove any sensitive information, e.g. user name, password, IP address, and company name. You can
replace those parts with "REDACTED" or other strings like "****".

674
LICENSE
View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

129
README.md
View File

@ -1,129 +0,0 @@
<p align="center"><img src= "https://github.com/1Panel-dev/maxkb/assets/52996290/c0694996-0eed-40d8-b369-322bf2a380bf" alt="MaxKB" width="300" /></p>
<h3 align="center">Ready-to-use AI Chatbot</h3>
<p align="center"><a href="https://trendshift.io/repositories/9113" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9113" alt="1Panel-dev%2FMaxKB | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a></p>
<p align="center">
<a href="https://www.gnu.org/licenses/gpl-3.0.html#license-text"><img src="https://img.shields.io/github/license/1Panel-dev/maxkb?color=%231890FF" alt="License: GPL v3"></a>
<a href="https://github.com/1Panel-dev/maxkb/releases/latest"><img src="https://img.shields.io/github/v/release/1Panel-dev/maxkb" alt="Latest release"></a>
<a href="https://github.com/1Panel-dev/maxkb"><img src="https://img.shields.io/github/stars/1Panel-dev/maxkb?color=%231890FF&style=flat-square" alt="Stars"></a>
<a href="https://hub.docker.com/r/1panel/maxkb"><img src="https://img.shields.io/docker/pulls/1panel/maxkb?label=downloads" alt="Download"></a><br/>
[<a href="/README_CN.md">中文(简体)</a>] | [<a href="/README.md">English</a>]
</p>
<hr/>
MaxKB = Max Knowledge Base, it is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities. MaxKB is widely applied in scenarios such as intelligent customer service, corporate internal knowledge bases, academic research, and education.
- **RAG Pipeline**: Supports direct uploading of documents / automatic crawling of online documents, with features for automatic text splitting, vectorization, and RAG (Retrieval-Augmented Generation). This effectively reduces hallucinations in large models, providing a superior smart Q&A interaction experience.
- **Flexible Orchestration**: Equipped with a powerful workflow engine, function library and MCP tool-use, enabling the orchestration of AI processes to meet the needs of complex business scenarios.
- **Seamless Integration**: Facilitates zero-coding rapid integration into third-party business systems, quickly equipping existing systems with intelligent Q&A capabilities to enhance user satisfaction.
- **Model-Agnostic**: Supports various large models, including private models (such as DeepSeek, Llama, Qwen, etc.) and public models (like OpenAI, Claude, Gemini, etc.).
- **Multi Modal**: Native support for input and output text, image, audio and video.
## Quick start
Execute the script below to start a MaxKB container using Docker:
```bash
docker run -d --name=maxkb --restart=always -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages 1panel/maxkb
```
Access MaxKB web interface at `http://your_server_ip:8080` with default admin credentials:
- username: admin
- password: MaxKB@123..
中国用户如遇到 Docker 镜像 Pull 失败问题,请参照该 [离线安装文档](https://maxkb.cn/docs/installation/offline_installtion/) 进行安装。
## Screenshots
<table style="border-collapse: collapse; border: 1px solid black;">
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/overview.png" alt="MaxKB Demo1" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/screenshot-models.png" alt="MaxKB Demo2" /></td>
</tr>
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/screenshot-knowledge.png" alt="MaxKB Demo3" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://maxkb.hk/images/screenshot-function.png" alt="MaxKB Demo4" /></td>
</tr>
</table>
## Technical stack
- Frontend[Vue.js](https://vuejs.org/)
- Backend[Python / Django](https://www.djangoproject.com/)
- LLM Framework[LangChain](https://www.langchain.com/)
- Database[PostgreSQL + pgvector](https://www.postgresql.org/)
## Feature Comparison
MaxKB is positioned as an Ready-to-use RAG (Retrieval-Augmented Generation) intelligent Q&A application, rather than a middleware platform for building large model applications. The following table is merely a comparison from a functional perspective.
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
<th align="center">LangChain</th>
<th align="center">Dify.AI</th>
<th align="center">Flowise</th>
<th align="center">MaxKB <br>Built upon LangChain</th>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">SSO/Access control</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">✅ (Pro)</td>
</tr>
<tr>
<td align="center">On-premise Deployment</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=1Panel-dev/MaxKB&type=Date)](https://star-history.com/#1Panel-dev/MaxKB&Date)
## License
Licensed under The GNU General Public License version 3 (GPLv3) (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
<https://www.gnu.org/licenses/gpl-3.0.html>
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

View File

@ -1,89 +0,0 @@
<p align="center"><img src= "https://github.com/1Panel-dev/maxkb/assets/52996290/c0694996-0eed-40d8-b369-322bf2a380bf" alt="MaxKB" width="300" /></p>
<h3 align="center">基于大模型和 RAG 的知识库问答系统</h3>
<h4 align="center">Ready-to-use, flexible RAG Chatbot</h4>
<p align="center">
<a href="https://trendshift.io/repositories/9113" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9113" alt="1Panel-dev%2FMaxKB | Trendshift" style="width: 250px; height: auto;" /></a>
<a href="https://market.aliyun.com/products/53690006/cmjj00067609.html?userCode=kmemb8jp" target="_blank"><img src="https://img.alicdn.com/imgextra/i2/O1CN01H5JIwY1rZ0OobDjnJ_!!6000000005644-2-tps-1000-216.png" alt="1Panel-dev%2FMaxKB | Aliyun" style="width: 250px; height: auto;" /></a>
</p>
<p align="center">
<a href="README_EN.md"><img src="https://img.shields.io/badge/English_README-blue" alt="English README"></a>
<a href="https://www.gnu.org/licenses/gpl-3.0.html#license-text"><img src="https://img.shields.io/github/license/1Panel-dev/maxkb" alt="License: GPL v3"></a>
<a href="https://github.com/1Panel-dev/maxkb/releases/latest"><img src="https://img.shields.io/github/v/release/1Panel-dev/maxkb" alt="Latest release"></a>
<a href="https://github.com/1Panel-dev/maxkb"><img src="https://img.shields.io/github/stars/1Panel-dev/maxkb?style=flat-square" alt="Stars"></a>
<a href="https://hub.docker.com/r/1panel/maxkb"><img src="https://img.shields.io/docker/pulls/1panel/maxkb?label=downloads" alt="Download"></a>
</p>
<hr/>
MaxKB = Max Knowledge Base是一款开箱即用的 RAG Chatbot具备强大的工作流和 MCP 工具调用能力。它支持对接各种主流大语言模型LLMs广泛应用于智能客服、企业内部知识库、学术研究与教育等场景。
- **开箱即用**:支持直接上传文档 / 自动爬取在线文档,支持文本自动拆分、向量化和 RAG检索增强生成有效减少大模型幻觉智能问答交互体验好
- **模型中立**支持对接各种大模型包括本地私有大模型DeepSeek R1 / Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 腾讯混元 / 字节豆包 / 百度千帆 / 智谱 AI / Kimi 等和国外公共大模型OpenAI / Claude / Gemini 等);
- **灵活编排**:内置强大的工作流引擎、函数库和 MCP 工具调用能力,支持编排 AI 工作过程,满足复杂业务场景下的需求;
- **无缝嵌入**:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度。
MaxKB 三分钟视频介绍https://www.bilibili.com/video/BV18JypYeEkj/
## 快速开始
```
# Linux 机器
docker run -d --name=maxkb --restart=always -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb
# Windows 机器
docker run -d --name=maxkb --restart=always -p 8080:8080 -v C:/maxkb:/var/lib/postgresql/data -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb
# 用户名: admin
# 密码: MaxKB@123..
```
- 你也可以通过 [1Panel 应用商店](https://apps.fit2cloud.com/1panel) 快速部署 MaxKB
- 如果是内网环境,推荐使用 [离线安装包](https://community.fit2cloud.com/#/products/maxkb/downloads) 进行安装部署;
- MaxKB 产品版本分为社区版和专业版,详情请参见:[MaxKB 产品版本对比](https://maxkb.cn/pricing.html)
- 如果您需要向团队介绍 MaxKB可以使用这个 [官方 PPT 材料](https://maxkb.cn/download/introduce-maxkb_202503.pdf)。
如你有更多问题,可以查看使用手册,或者通过论坛与我们交流。
- [案例展示](USE-CASES.md)
- [使用手册](https://maxkb.cn/docs/)
- [论坛求助](https://bbs.fit2cloud.com/c/mk/11)
- 技术交流群
<image height="150px" width="150px" src="https://github.com/1Panel-dev/MaxKB/assets/52996290/a083d214-02be-4178-a1db-4f428124153a"/>
## UI 展示
<table style="border-collapse: collapse; border: 1px solid black;">
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/d87395fa-a8d7-401c-82bf-c6e475d10ae9" alt="MaxKB Demo1" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/1Panel-dev/MaxKB/assets/52996290/47c35ee4-3a3b-4bd4-9f4f-ee20788b2b9a" alt="MaxKB Demo2" /></td>
</tr>
<tr>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/user-attachments/assets/9a1043cb-fa62-4f71-b9a3-0b46fa59a70e" alt="MaxKB Demo3" /></td>
<td style="padding: 5px;background-color:#fff;"><img src= "https://github.com/user-attachments/assets/3407ce9a-779c-4eb4-858e-9441a2ddc664" alt="MaxKB Demo4" /></td>
</tr>
</table>
## 技术栈
- 前端:[Vue.js](https://cn.vuejs.org/)
- 后端:[Python / Django](https://www.djangoproject.com/)
- LangChain[LangChain](https://www.langchain.com/)
- 向量数据库:[PostgreSQL / pgvector](https://www.postgresql.org/)
## 飞致云的其他明星项目
- [1Panel](https://github.com/1panel-dev/1panel/) - 现代化、开源的 Linux 服务器运维管理面板
- [JumpServer](https://github.com/jumpserver/jumpserver/) - 广受欢迎的开源堡垒机
- [DataEase](https://github.com/dataease/dataease/) - 人人可用的开源数据可视化分析工具
- [MeterSphere](https://github.com/metersphere/metersphere/) - 新一代的开源持续测试工具
- [Halo](https://github.com/halo-dev/halo/) - 强大易用的开源建站工具
## License
Copyright (c) 2014-2025 飞致云 FIT2CLOUD, All rights reserved.
Licensed under The GNU General Public License version 3 (GPLv3) (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
<https://www.gnu.org/licenses/gpl-3.0.html>
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

View File

@ -1,17 +0,0 @@
# 安全说明
如果您发现安全问题,请直接联系我们:
- support@fit2cloud.com
- 400-052-0755
感谢您的支持!
# Security Policy
All security bugs should be reported to the contact as below:
- support@fit2cloud.com
- 400-052-0755
Thanks for your support!

View File

@ -1,39 +0,0 @@
<h3 align="center">MaxKB 应用案例,持续更新中...</h3>
------------------------------
- [MaxKB 应用案例:中国农业大学-小鹉哥](https://mp.weixin.qq.com/s/4g_gySMBQZCJ9OZ-yBkmvw)
- [MaxKB 应用案例:东北财经大学-小银杏](https://mp.weixin.qq.com/s/3BoxkY7EMomMmmvFYxvDIA)
- [MaxKB 应用案例:中铁水务](https://mp.weixin.qq.com/s/voNAddbK2CJOrJJs1ewZ8g)
- [MaxKB 应用案例:解放军总医院](https://mp.weixin.qq.com/s/ETrZC-vrA4Aap0eF-15EeQ)
- [MaxKB 应用案例:无锡市数据局](https://mp.weixin.qq.com/s/enfUFLevvL_La74PQ0kIXw)
- [MaxKB 应用案例:中核西仪研究院-西仪睿答](https://mp.weixin.qq.com/s/CbKr4mev8qahKLAtV6Dxdg)
- [MaxKB 应用案例:南京中医药大学](https://mp.weixin.qq.com/s/WUmAKYbZjp3272HIecpRFA)
- [MaxKB 应用案例:西北电力设计院-AI数字助理Memex](https://mp.weixin.qq.com/s/ezHFdB7C7AVL9MTtDwYGSA)
- [MaxKB 应用案例:西安国际医院中心医院-国医小助](https://mp.weixin.qq.com/s/DSOUvwrQrxbqQxKBilTCFQ)
- [MaxKB 应用案例华莱士智能AI客服助手上线啦](https://www.bilibili.com/video/BV1hQtVeXEBL)
- [MaxKB 应用案例:把医疗行业知识转化为知识库问答助手!](https://www.bilibili.com/video/BV157wme9EgB)
- [MaxKB 应用案例会展AI智能客服体验](https://www.bilibili.com/video/BV1J7BqY6EKA)
- [MaxKB 应用案例孩子要上幼儿园了AI 智能助手择校好帮手](https://www.bilibili.com/video/BV1wKrhYvEer)
- [MaxKB 应用案例产品使用指南AI助手新手小白也能轻松搞定](https://www.bilibili.com/video/BV1Yz6gYtEqX)
- [MaxKB 应用案例生物医药AI客服智能体验!](https://www.bilibili.com/video/BV13JzvYsE3e)
- [MaxKB 应用案例高校行政管理AI小助手](https://www.bilibili.com/video/BV1yvBMYvEdy)
- [MaxKB 应用案例:岳阳市人民医院-OA小助手](https://mp.weixin.qq.com/s/O94Qo3UH-MiUtDdWCVg8sQ)
- [MaxKB 应用案例:常熟市第一人民医院](https://mp.weixin.qq.com/s/s5XXGTR3_MUo41NbJ8WzZQ)
- [MaxKB 应用案例:华北水利水电大学](https://mp.weixin.qq.com/s/PoOFAcMCr9qJdvSj8c08qg)
- [MaxKB 应用案例:唐山海事局-“小海”AI语音助手](https://news.qq.com/rain/a/20250223A030BE00)
- [MaxKB 应用案例:湖南汉寿政务](http://hsds.hsdj.gov.cn:19999/ui/chat/a2c976736739aadc)
- [MaxKB 应用案例:广州市妇女儿童医疗中心-AI医疗数据分类分级小助手](https://mp.weixin.qq.com/s/YHUMkUOAaUomBV8bswpK3g)
- [MaxKB 应用案例:苏州热工研究院有限公司-维修大纲评估质量自查AI小助手](https://mp.weixin.qq.com/s/Ts5FQdnv7Tu9Jp7bvofCVA)
- [MaxKB 应用案例:国核自仪系统工程有限公司-NuCON AI帮](https://mp.weixin.qq.com/s/HNPc7u5xVfGLJr8IQz3vjQ)
- [MaxKB 应用案例深圳通开启Deep Seek智能应用新篇章](https://mp.weixin.qq.com/s/SILN0GSescH9LyeQqYP0VQ)
- [MaxKB 应用案例南通智慧出行领跑长三角首款接入DeepSeek的"畅行南通"APP上线AI新场景](https://mp.weixin.qq.com/s/WEC9UQ6msY0VS8LhTZh-Ew)
- [MaxKB 应用案例:中船动力人工智能"智慧动力云助手"及首批数字员工正式上线](https://mp.weixin.qq.com/s/OGcEkjh9DzGO1Tkc9nr7qg)
- [MaxKB 应用案例AI+矿山DeepSeek助力绿色智慧矿山智慧“升级”](https://mp.weixin.qq.com/s/SZstxTvVoLZg0ECbZbfpIA)
- [MaxKB 应用案例DeepSeek落地弘盛铜业国产大模型点亮"黑灯工厂"新引擎](https://mp.weixin.qq.com/s/Eczdx574MS5RMF7WfHN7_A)
- [MaxKB 应用案例:拥抱智能时代!中国五矿以 “AI+”赋能企业发展](https://mp.weixin.qq.com/s/D5vBtlX2E81pWE3_2OgWSw)
- [MaxKB 应用案例DeepSeek赋能中冶武勘AI智能体](https://mp.weixin.qq.com/s/8m0vxGcWXNdZazziQrLyxg)
- [MaxKB 应用案例重磅陕西广电网络“秦岭云”平台实现DeepSeek本地化部署](https://mp.weixin.qq.com/s/ZKmEU_wWShK1YDomKJHQeA)
- [MaxKB 应用案例粤海集团完成DeepSeek私有化部署助力集团智能化管理](https://mp.weixin.qq.com/s/2JbVp0-kr9Hfp-0whH4cvg)
- [MaxKB 应用案例建筑材料工业信息中心完成DeepSeek本地化部署推动行业数智化转型新发展](https://mp.weixin.qq.com/s/HThGSnND3qDF8ySEqiM4jw)
- [MaxKB 应用案例一起DeepSeek福建设计以AI大模型开启新篇章](https://mp.weixin.qq.com/s/m67e-H7iQBg3d24NM82UjA)

View File

View File

@ -1,3 +0,0 @@
from django.contrib import admin
# Register your models here.

View File

@ -1,6 +0,0 @@
from django.apps import AppConfig
class ApplicationConfig(AppConfig):
default_auto_field = 'django.db.models.BigAutoField'
name = 'application'

View File

@ -1,157 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file I_base_chat_pipeline.py
@date2024/1/9 17:25
@desc:
"""
import time
from abc import abstractmethod
from typing import Type
from rest_framework import serializers
from dataset.models import Paragraph
class ParagraphPipelineModel:
def __init__(self, _id: str, document_id: str, dataset_id: str, content: str, title: str, status: str,
is_active: bool, comprehensive_score: float, similarity: float, dataset_name: str, document_name: str,
hit_handling_method: str, directly_return_similarity: float, meta: dict = None):
self.id = _id
self.document_id = document_id
self.dataset_id = dataset_id
self.content = content
self.title = title
self.status = status,
self.is_active = is_active
self.comprehensive_score = comprehensive_score
self.similarity = similarity
self.dataset_name = dataset_name
self.document_name = document_name
self.hit_handling_method = hit_handling_method
self.directly_return_similarity = directly_return_similarity
self.meta = meta
def to_dict(self):
return {
'id': self.id,
'document_id': self.document_id,
'dataset_id': self.dataset_id,
'content': self.content,
'title': self.title,
'status': self.status,
'is_active': self.is_active,
'comprehensive_score': self.comprehensive_score,
'similarity': self.similarity,
'dataset_name': self.dataset_name,
'document_name': self.document_name,
'meta': self.meta,
}
class builder:
def __init__(self):
self.similarity = None
self.paragraph = {}
self.comprehensive_score = None
self.document_name = None
self.dataset_name = None
self.hit_handling_method = None
self.directly_return_similarity = 0.9
self.meta = {}
def add_paragraph(self, paragraph):
if isinstance(paragraph, Paragraph):
self.paragraph = {'id': paragraph.id,
'document_id': paragraph.document_id,
'dataset_id': paragraph.dataset_id,
'content': paragraph.content,
'title': paragraph.title,
'status': paragraph.status,
'is_active': paragraph.is_active,
}
else:
self.paragraph = paragraph
return self
def add_dataset_name(self, dataset_name):
self.dataset_name = dataset_name
return self
def add_document_name(self, document_name):
self.document_name = document_name
return self
def add_hit_handling_method(self, hit_handling_method):
self.hit_handling_method = hit_handling_method
return self
def add_directly_return_similarity(self, directly_return_similarity):
self.directly_return_similarity = directly_return_similarity
return self
def add_comprehensive_score(self, comprehensive_score: float):
self.comprehensive_score = comprehensive_score
return self
def add_similarity(self, similarity: float):
self.similarity = similarity
return self
def add_meta(self, meta: dict):
self.meta = meta
return self
def build(self):
return ParagraphPipelineModel(str(self.paragraph.get('id')), str(self.paragraph.get('document_id')),
str(self.paragraph.get('dataset_id')),
self.paragraph.get('content'), self.paragraph.get('title'),
self.paragraph.get('status'),
self.paragraph.get('is_active'),
self.comprehensive_score, self.similarity, self.dataset_name,
self.document_name, self.hit_handling_method, self.directly_return_similarity,
self.meta)
class IBaseChatPipelineStep:
def __init__(self):
# 当前步骤上下文,用于存储当前步骤信息
self.context = {}
@abstractmethod
def get_step_serializer(self, manage) -> Type[serializers.Serializer]:
pass
def valid_args(self, manage):
step_serializer_clazz = self.get_step_serializer(manage)
step_serializer = step_serializer_clazz(data=manage.context)
step_serializer.is_valid(raise_exception=True)
self.context['step_args'] = step_serializer.data
def run(self, manage):
"""
:param manage: 步骤管理器
:return: 执行结果
"""
start_time = time.time()
self.context['start_time'] = start_time
# 校验参数,
self.valid_args(manage)
self._run(manage)
self.context['run_time'] = time.time() - start_time
def _run(self, manage):
pass
def execute(self, **kwargs):
pass
def get_details(self, manage, **kwargs):
"""
运行详情
:return: 步骤详情
"""
return None

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/1/9 17:23
@desc:
"""

View File

@ -1,57 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file pipeline_manage.py
@date2024/1/9 17:40
@desc:
"""
import time
from functools import reduce
from typing import List, Type, Dict
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep
from common.handle.base_to_response import BaseToResponse
from common.handle.impl.response.system_to_response import SystemToResponse
class PipelineManage:
def __init__(self, step_list: List[Type[IBaseChatPipelineStep]],
base_to_response: BaseToResponse = SystemToResponse()):
# 步骤执行器
self.step_list = [step() for step in step_list]
# 上下文
self.context = {'message_tokens': 0, 'answer_tokens': 0}
self.base_to_response = base_to_response
def run(self, context: Dict = None):
self.context['start_time'] = time.time()
if context is not None:
for key, value in context.items():
self.context[key] = value
for step in self.step_list:
step.run(self)
def get_details(self):
return reduce(lambda x, y: {**x, **y}, [{item.get('step_type'): item} for item in
filter(lambda r: r is not None,
[row.get_details(self) for row in self.step_list])], {})
def get_base_to_response(self):
return self.base_to_response
class builder:
def __init__(self):
self.step_list: List[Type[IBaseChatPipelineStep]] = []
self.base_to_response = SystemToResponse()
def append_step(self, step: Type[IBaseChatPipelineStep]):
self.step_list.append(step)
return self
def add_base_to_response(self, base_to_response: BaseToResponse):
self.base_to_response = base_to_response
return self
def build(self):
return PipelineManage(step_list=self.step_list, base_to_response=self.base_to_response)

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/1/9 18:23
@desc:
"""

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/1/9 18:23
@desc:
"""

View File

@ -1,110 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_chat_step.py
@date2024/1/9 18:17
@desc: 对话
"""
from abc import abstractmethod
from typing import Type, List
from django.utils.translation import gettext_lazy as _
from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseMessage
from rest_framework import serializers
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep, ParagraphPipelineModel
from application.chat_pipeline.pipeline_manage import PipelineManage
from application.serializers.application_serializers import NoReferencesSetting
from common.field.common import InstanceField
from common.util.field_message import ErrMessage
class ModelField(serializers.Field):
def to_internal_value(self, data):
if not isinstance(data, BaseChatModel):
self.fail(_('Model type error'), value=data)
return data
def to_representation(self, value):
return value
class MessageField(serializers.Field):
def to_internal_value(self, data):
if not isinstance(data, BaseMessage):
self.fail(_('Message type error'), value=data)
return data
def to_representation(self, value):
return value
class PostResponseHandler:
@abstractmethod
def handler(self, chat_id, chat_record_id, paragraph_list: List[ParagraphPipelineModel], problem_text: str,
answer_text,
manage, step, padding_problem_text: str = None, client_id=None, **kwargs):
pass
class IChatStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 对话列表
message_list = serializers.ListField(required=True, child=MessageField(required=True),
error_messages=ErrMessage.list(_("Conversation list")))
model_id = serializers.UUIDField(required=False, allow_null=True, error_messages=ErrMessage.uuid(_("Model id")))
# 段落列表
paragraph_list = serializers.ListField(error_messages=ErrMessage.list(_("Paragraph List")))
# 对话id
chat_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("Conversation ID")))
# 用户问题
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.uuid(_("User Questions")))
# 后置处理器
post_response_handler = InstanceField(model_type=PostResponseHandler,
error_messages=ErrMessage.base(_("Post-processor")))
# 补全问题
padding_problem_text = serializers.CharField(required=False,
error_messages=ErrMessage.base(_("Completion Question")))
# 是否使用流的形式输出
stream = serializers.BooleanField(required=False, error_messages=ErrMessage.base(_("Streaming Output")))
client_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Client id")))
client_type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Client Type")))
# 未查询到引用分段
no_references_setting = NoReferencesSetting(required=True,
error_messages=ErrMessage.base(_("No reference segment settings")))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("User ID")))
model_setting = serializers.DictField(required=True, allow_null=True,
error_messages=ErrMessage.dict(_("Model settings")))
model_params_setting = serializers.DictField(required=False, allow_null=True,
error_messages=ErrMessage.dict(_("Model parameter settings")))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
message_list: List = self.initial_data.get('message_list')
for message in message_list:
if not isinstance(message, BaseMessage):
raise Exception(_("message type error"))
def get_step_serializer(self, manage: PipelineManage) -> Type[serializers.Serializer]:
return self.InstanceSerializer
def _run(self, manage: PipelineManage):
chat_result = self.execute(**self.context['step_args'], manage=manage)
manage.context['chat_result'] = chat_result
@abstractmethod
def execute(self, message_list: List[BaseMessage],
chat_id, problem_text,
post_response_handler: PostResponseHandler,
model_id: str = None,
user_id: str = None,
paragraph_list=None,
manage: PipelineManage = None,
padding_problem_text: str = None, stream: bool = True, client_id=None, client_type=None,
no_references_setting=None, model_params_setting=None, model_setting=None, **kwargs):
pass

View File

@ -1,334 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_chat_step.py
@date2024/1/9 18:25
@desc: 对话step Base实现
"""
import logging
import time
import traceback
import uuid
from typing import List
from django.db.models import QuerySet
from django.http import StreamingHttpResponse
from django.utils.translation import gettext as _
from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseMessage
from langchain.schema.messages import HumanMessage, AIMessage
from langchain_core.messages import AIMessageChunk
from rest_framework import status
from application.chat_pipeline.I_base_chat_pipeline import ParagraphPipelineModel
from application.chat_pipeline.pipeline_manage import PipelineManage
from application.chat_pipeline.step.chat_step.i_chat_step import IChatStep, PostResponseHandler
from application.flow.tools import Reasoning
from application.models.api_key_model import ApplicationPublicAccessClient
from common.constants.authentication_type import AuthenticationType
from setting.models_provider.tools import get_model_instance_by_model_user_id
def add_access_num(client_id=None, client_type=None, application_id=None):
if client_type == AuthenticationType.APPLICATION_ACCESS_TOKEN.value and application_id is not None:
application_public_access_client = (QuerySet(ApplicationPublicAccessClient).filter(client_id=client_id,
application_id=application_id)
.first())
if application_public_access_client is not None:
application_public_access_client.access_num = application_public_access_client.access_num + 1
application_public_access_client.intraday_access_num = application_public_access_client.intraday_access_num + 1
application_public_access_client.save()
def write_context(step, manage, request_token, response_token, all_text):
step.context['message_tokens'] = request_token
step.context['answer_tokens'] = response_token
current_time = time.time()
step.context['answer_text'] = all_text
step.context['run_time'] = current_time - step.context['start_time']
manage.context['run_time'] = current_time - manage.context['start_time']
manage.context['message_tokens'] = manage.context['message_tokens'] + request_token
manage.context['answer_tokens'] = manage.context['answer_tokens'] + response_token
def event_content(response,
chat_id,
chat_record_id,
paragraph_list: List[ParagraphPipelineModel],
post_response_handler: PostResponseHandler,
manage,
step,
chat_model,
message_list: List[BaseMessage],
problem_text: str,
padding_problem_text: str = None,
client_id=None, client_type=None,
is_ai_chat: bool = None,
model_setting=None):
if model_setting is None:
model_setting = {}
reasoning_content_enable = model_setting.get('reasoning_content_enable', False)
reasoning_content_start = model_setting.get('reasoning_content_start', '<think>')
reasoning_content_end = model_setting.get('reasoning_content_end', '</think>')
reasoning = Reasoning(reasoning_content_start,
reasoning_content_end)
all_text = ''
reasoning_content = ''
try:
response_reasoning_content = False
for chunk in response:
reasoning_chunk = reasoning.get_reasoning_content(chunk)
content_chunk = reasoning_chunk.get('content')
if 'reasoning_content' in chunk.additional_kwargs:
response_reasoning_content = True
reasoning_content_chunk = chunk.additional_kwargs.get('reasoning_content', '')
else:
reasoning_content_chunk = reasoning_chunk.get('reasoning_content')
all_text += content_chunk
if reasoning_content_chunk is None:
reasoning_content_chunk = ''
reasoning_content += reasoning_content_chunk
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], content_chunk,
False,
0, 0, {'node_is_end': False,
'view_type': 'many_view',
'node_type': 'ai-chat-node',
'real_node_id': 'ai-chat-node',
'reasoning_content': reasoning_content_chunk if reasoning_content_enable else ''})
reasoning_chunk = reasoning.get_end_reasoning_content()
all_text += reasoning_chunk.get('content')
reasoning_content_chunk = ""
if not response_reasoning_content:
reasoning_content_chunk = reasoning_chunk.get(
'reasoning_content')
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], reasoning_chunk.get('content'),
False,
0, 0, {'node_is_end': False,
'view_type': 'many_view',
'node_type': 'ai-chat-node',
'real_node_id': 'ai-chat-node',
'reasoning_content'
: reasoning_content_chunk if reasoning_content_enable else ''})
# 获取token
if is_ai_chat:
try:
request_token = chat_model.get_num_tokens_from_messages(message_list)
response_token = chat_model.get_num_tokens(all_text)
except Exception as e:
request_token = 0
response_token = 0
else:
request_token = 0
response_token = 0
write_context(step, manage, request_token, response_token, all_text)
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
all_text, manage, step, padding_problem_text, client_id,
reasoning_content=reasoning_content if reasoning_content_enable else ''
, asker=asker)
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], '', True,
request_token, response_token,
{'node_is_end': True, 'view_type': 'many_view',
'node_type': 'ai-chat-node'})
add_access_num(client_id, client_type, manage.context.get('application_id'))
except Exception as e:
logging.getLogger("max_kb_error").error(f'{str(e)}:{traceback.format_exc()}')
all_text = 'Exception:' + str(e)
write_context(step, manage, 0, 0, all_text)
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
all_text, manage, step, padding_problem_text, client_id, reasoning_content='',
asker=asker)
add_access_num(client_id, client_type, manage.context.get('application_id'))
yield manage.get_base_to_response().to_stream_chunk_response(chat_id, str(chat_record_id), 'ai-chat-node',
[], all_text,
False,
0, 0, {'node_is_end': False,
'view_type': 'many_view',
'node_type': 'ai-chat-node',
'real_node_id': 'ai-chat-node',
'reasoning_content': ''})
class BaseChatStep(IChatStep):
def execute(self, message_list: List[BaseMessage],
chat_id,
problem_text,
post_response_handler: PostResponseHandler,
model_id: str = None,
user_id: str = None,
paragraph_list=None,
manage: PipelineManage = None,
padding_problem_text: str = None,
stream: bool = True,
client_id=None, client_type=None,
no_references_setting=None,
model_params_setting=None,
model_setting=None,
**kwargs):
chat_model = get_model_instance_by_model_user_id(model_id, user_id,
**model_params_setting) if model_id is not None else None
if stream:
return self.execute_stream(message_list, chat_id, problem_text, post_response_handler, chat_model,
paragraph_list,
manage, padding_problem_text, client_id, client_type, no_references_setting,
model_setting)
else:
return self.execute_block(message_list, chat_id, problem_text, post_response_handler, chat_model,
paragraph_list,
manage, padding_problem_text, client_id, client_type, no_references_setting,
model_setting)
def get_details(self, manage, **kwargs):
return {
'step_type': 'chat_step',
'run_time': self.context['run_time'],
'model_id': str(manage.context['model_id']),
'message_list': self.reset_message_list(self.context['step_args'].get('message_list'),
self.context['answer_text']),
'message_tokens': self.context['message_tokens'],
'answer_tokens': self.context['answer_tokens'],
'cost': 0,
}
@staticmethod
def reset_message_list(message_list: List[BaseMessage], answer_text):
result = [{'role': 'user' if isinstance(message, HumanMessage) else 'ai', 'content': message.content} for
message
in
message_list]
result.append({'role': 'ai', 'content': answer_text})
return result
@staticmethod
def get_stream_result(message_list: List[BaseMessage],
chat_model: BaseChatModel = None,
paragraph_list=None,
no_references_setting=None,
problem_text=None):
if paragraph_list is None:
paragraph_list = []
directly_return_chunk_list = [AIMessageChunk(content=paragraph.content)
for paragraph in paragraph_list if (
paragraph.hit_handling_method == 'directly_return' and paragraph.similarity >= paragraph.directly_return_similarity)]
if directly_return_chunk_list is not None and len(directly_return_chunk_list) > 0:
return iter(directly_return_chunk_list), False
elif len(paragraph_list) == 0 and no_references_setting.get(
'status') == 'designated_answer':
return iter(
[AIMessageChunk(content=no_references_setting.get('value').replace('{question}', problem_text))]), False
if chat_model is None:
return iter([AIMessageChunk(
_('Sorry, the AI model is not configured. Please go to the application to set up the AI model first.'))]), False
else:
return chat_model.stream(message_list), True
def execute_stream(self, message_list: List[BaseMessage],
chat_id,
problem_text,
post_response_handler: PostResponseHandler,
chat_model: BaseChatModel = None,
paragraph_list=None,
manage: PipelineManage = None,
padding_problem_text: str = None,
client_id=None, client_type=None,
no_references_setting=None,
model_setting=None):
chat_result, is_ai_chat = self.get_stream_result(message_list, chat_model, paragraph_list,
no_references_setting, problem_text)
chat_record_id = uuid.uuid1()
r = StreamingHttpResponse(
streaming_content=event_content(chat_result, chat_id, chat_record_id, paragraph_list,
post_response_handler, manage, self, chat_model, message_list, problem_text,
padding_problem_text, client_id, client_type, is_ai_chat, model_setting),
content_type='text/event-stream;charset=utf-8')
r['Cache-Control'] = 'no-cache'
return r
@staticmethod
def get_block_result(message_list: List[BaseMessage],
chat_model: BaseChatModel = None,
paragraph_list=None,
no_references_setting=None,
problem_text=None):
if paragraph_list is None:
paragraph_list = []
directly_return_chunk_list = [AIMessageChunk(content=paragraph.content)
for paragraph in paragraph_list if (
paragraph.hit_handling_method == 'directly_return' and paragraph.similarity >= paragraph.directly_return_similarity)]
if directly_return_chunk_list is not None and len(directly_return_chunk_list) > 0:
return directly_return_chunk_list[0], False
elif len(paragraph_list) == 0 and no_references_setting.get(
'status') == 'designated_answer':
return AIMessage(no_references_setting.get('value').replace('{question}', problem_text)), False
if chat_model is None:
return AIMessage(
_('Sorry, the AI model is not configured. Please go to the application to set up the AI model first.')), False
else:
return chat_model.invoke(message_list), True
def execute_block(self, message_list: List[BaseMessage],
chat_id,
problem_text,
post_response_handler: PostResponseHandler,
chat_model: BaseChatModel = None,
paragraph_list=None,
manage: PipelineManage = None,
padding_problem_text: str = None,
client_id=None, client_type=None, no_references_setting=None,
model_setting=None):
reasoning_content_enable = model_setting.get('reasoning_content_enable', False)
reasoning_content_start = model_setting.get('reasoning_content_start', '<think>')
reasoning_content_end = model_setting.get('reasoning_content_end', '</think>')
reasoning = Reasoning(reasoning_content_start,
reasoning_content_end)
chat_record_id = uuid.uuid1()
# 调用模型
try:
chat_result, is_ai_chat = self.get_block_result(message_list, chat_model, paragraph_list,
no_references_setting, problem_text)
if is_ai_chat:
request_token = chat_model.get_num_tokens_from_messages(message_list)
response_token = chat_model.get_num_tokens(chat_result.content)
else:
request_token = 0
response_token = 0
write_context(self, manage, request_token, response_token, chat_result.content)
reasoning_result = reasoning.get_reasoning_content(chat_result)
reasoning_result_end = reasoning.get_end_reasoning_content()
content = reasoning_result.get('content') + reasoning_result_end.get('content')
if 'reasoning_content' in chat_result.response_metadata:
reasoning_content = chat_result.response_metadata.get('reasoning_content', '')
else:
reasoning_content = reasoning_result.get('reasoning_content') + reasoning_result_end.get(
'reasoning_content')
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
content, manage, self, padding_problem_text, client_id,
reasoning_content=reasoning_content if reasoning_content_enable else '',
asker=asker)
add_access_num(client_id, client_type, manage.context.get('application_id'))
return manage.get_base_to_response().to_block_response(str(chat_id), str(chat_record_id),
content, True,
request_token, response_token,
{
'reasoning_content': reasoning_content if reasoning_content_enable else '',
'answer_list': [{
'content': content,
'reasoning_content': reasoning_content if reasoning_content_enable else ''
}]})
except Exception as e:
all_text = 'Exception:' + str(e)
write_context(self, manage, 0, 0, all_text)
asker = manage.context.get('form_data', {}).get('asker', None)
post_response_handler.handler(chat_id, chat_record_id, paragraph_list, problem_text,
all_text, manage, self, padding_problem_text, client_id, reasoning_content='',
asker=asker)
add_access_num(client_id, client_type, manage.context.get('application_id'))
return manage.get_base_to_response().to_block_response(str(chat_id), str(chat_record_id), all_text, True, 0,
0, _status=status.HTTP_500_INTERNAL_SERVER_ERROR)

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/1/9 18:23
@desc:
"""

View File

@ -1,81 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_generate_human_message_step.py
@date2024/1/9 18:15
@desc: 生成对话模板
"""
from abc import abstractmethod
from typing import Type, List
from django.utils.translation import gettext_lazy as _
from langchain.schema import BaseMessage
from rest_framework import serializers
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep, ParagraphPipelineModel
from application.chat_pipeline.pipeline_manage import PipelineManage
from application.models import ChatRecord
from application.serializers.application_serializers import NoReferencesSetting
from common.field.common import InstanceField
from common.util.field_message import ErrMessage
class IGenerateHumanMessageStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 问题
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.char(_("question")))
# 段落列表
paragraph_list = serializers.ListField(child=InstanceField(model_type=ParagraphPipelineModel, required=True),
error_messages=ErrMessage.list(_("Paragraph List")))
# 历史对答
history_chat_record = serializers.ListField(child=InstanceField(model_type=ChatRecord, required=True),
error_messages=ErrMessage.list(_("History Questions")))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
# 最大携带知识库段落长度
max_paragraph_char_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(
_("Maximum length of the knowledge base paragraph")))
# 模板
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
system = serializers.CharField(required=False, allow_null=True, allow_blank=True,
error_messages=ErrMessage.char(_("System prompt words (role)")))
# 补齐问题
padding_problem_text = serializers.CharField(required=False, error_messages=ErrMessage.char(_("Completion problem")))
# 未查询到引用分段
no_references_setting = NoReferencesSetting(required=True, error_messages=ErrMessage.base(_("No reference segment settings")))
def get_step_serializer(self, manage: PipelineManage) -> Type[serializers.Serializer]:
return self.InstanceSerializer
def _run(self, manage: PipelineManage):
message_list = self.execute(**self.context['step_args'])
manage.context['message_list'] = message_list
@abstractmethod
def execute(self,
problem_text: str,
paragraph_list: List[ParagraphPipelineModel],
history_chat_record: List[ChatRecord],
dialogue_number: int,
max_paragraph_char_number: int,
prompt: str,
padding_problem_text: str = None,
no_references_setting=None,
system=None,
**kwargs) -> List[BaseMessage]:
"""
:param problem_text: 原始问题文本
:param paragraph_list: 段落列表
:param history_chat_record: 历史对话记录
:param dialogue_number: 多轮对话数量
:param max_paragraph_char_number: 最大段落长度
:param prompt: 模板
:param padding_problem_text 用户修改文本
:param kwargs: 其他参数
:param no_references_setting: 无引用分段设置
:param system 系统提示称
:return:
"""
pass

View File

@ -1,73 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_generate_human_message_step.py.py
@date2024/1/10 17:50
@desc:
"""
from typing import List, Dict
from langchain.schema import BaseMessage, HumanMessage
from langchain_core.messages import SystemMessage
from application.chat_pipeline.I_base_chat_pipeline import ParagraphPipelineModel
from application.chat_pipeline.step.generate_human_message_step.i_generate_human_message_step import \
IGenerateHumanMessageStep
from application.models import ChatRecord
from common.util.split_model import flat_map
class BaseGenerateHumanMessageStep(IGenerateHumanMessageStep):
def execute(self, problem_text: str,
paragraph_list: List[ParagraphPipelineModel],
history_chat_record: List[ChatRecord],
dialogue_number: int,
max_paragraph_char_number: int,
prompt: str,
padding_problem_text: str = None,
no_references_setting=None,
system=None,
**kwargs) -> List[BaseMessage]:
prompt = prompt if (paragraph_list is not None and len(paragraph_list) > 0) else no_references_setting.get(
'value')
exec_problem_text = padding_problem_text if padding_problem_text is not None else problem_text
start_index = len(history_chat_record) - dialogue_number
history_message = [[history_chat_record[index].get_human_message(), history_chat_record[index].get_ai_message()]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))]
if system is not None and len(system) > 0:
return [SystemMessage(system), *flat_map(history_message),
self.to_human_message(prompt, exec_problem_text, max_paragraph_char_number, paragraph_list,
no_references_setting)]
return [*flat_map(history_message),
self.to_human_message(prompt, exec_problem_text, max_paragraph_char_number, paragraph_list,
no_references_setting)]
@staticmethod
def to_human_message(prompt: str,
problem: str,
max_paragraph_char_number: int,
paragraph_list: List[ParagraphPipelineModel],
no_references_setting: Dict):
if paragraph_list is None or len(paragraph_list) == 0:
if no_references_setting.get('status') == 'ai_questioning':
return HumanMessage(
content=no_references_setting.get('value').replace('{question}', problem))
else:
return HumanMessage(content=prompt.replace('{data}', "").replace('{question}', problem))
temp_data = ""
data_list = []
for p in paragraph_list:
content = f"{p.title}:{p.content}"
temp_data += content
if len(temp_data) > max_paragraph_char_number:
row_data = content[0:max_paragraph_char_number - len(temp_data)]
data_list.append(f"<data>{row_data}</data>")
break
else:
data_list.append(f"<data>{content}</data>")
data = "\n".join(data_list)
return HumanMessage(content=prompt.replace('{data}', data).replace('{question}', problem))

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/1/9 18:23
@desc:
"""

View File

@ -1,57 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_reset_problem_step.py
@date2024/1/9 18:12
@desc: 重写处理问题
"""
from abc import abstractmethod
from typing import Type, List
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep
from application.chat_pipeline.pipeline_manage import PipelineManage
from application.models import ChatRecord
from common.field.common import InstanceField
from common.util.field_message import ErrMessage
class IResetProblemStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 问题文本
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.float(_("question")))
# 历史对答
history_chat_record = serializers.ListField(child=InstanceField(model_type=ChatRecord, required=True),
error_messages=ErrMessage.list(_("History Questions")))
# 大语言模型
model_id = serializers.UUIDField(required=False, allow_null=True, error_messages=ErrMessage.uuid(_("Model id")))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("User ID")))
problem_optimization_prompt = serializers.CharField(required=False, max_length=102400,
error_messages=ErrMessage.char(
_("Question completion prompt")))
def get_step_serializer(self, manage: PipelineManage) -> Type[serializers.Serializer]:
return self.InstanceSerializer
def _run(self, manage: PipelineManage):
padding_problem = self.execute(**self.context.get('step_args'))
# 用户输入问题
source_problem_text = self.context.get('step_args').get('problem_text')
self.context['problem_text'] = source_problem_text
self.context['padding_problem_text'] = padding_problem
manage.context['problem_text'] = source_problem_text
manage.context['padding_problem_text'] = padding_problem
# 累加tokens
manage.context['message_tokens'] = manage.context.get('message_tokens', 0) + self.context.get('message_tokens',
0)
manage.context['answer_tokens'] = manage.context.get('answer_tokens', 0) + self.context.get('answer_tokens', 0)
@abstractmethod
def execute(self, problem_text: str, history_chat_record: List[ChatRecord] = None, model_id: str = None,
problem_optimization_prompt=None,
user_id=None,
**kwargs):
pass

View File

@ -1,68 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_reset_problem_step.py
@date2024/1/10 14:35
@desc:
"""
from typing import List
from django.utils.translation import gettext as _
from langchain.schema import HumanMessage
from application.chat_pipeline.step.reset_problem_step.i_reset_problem_step import IResetProblemStep
from application.models import ChatRecord
from common.util.split_model import flat_map
from setting.models_provider.tools import get_model_instance_by_model_user_id
prompt = _(
"() contains the user's question. Answer the guessed user's question based on the context ({question}) Requirement: Output a complete question and put it in the <data></data> tag")
class BaseResetProblemStep(IResetProblemStep):
def execute(self, problem_text: str, history_chat_record: List[ChatRecord] = None, model_id: str = None,
problem_optimization_prompt=None,
user_id=None,
**kwargs) -> str:
chat_model = get_model_instance_by_model_user_id(model_id, user_id) if model_id is not None else None
if chat_model is None:
return problem_text
start_index = len(history_chat_record) - 3
history_message = [[history_chat_record[index].get_human_message(), history_chat_record[index].get_ai_message()]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))]
reset_prompt = problem_optimization_prompt if problem_optimization_prompt else prompt
message_list = [*flat_map(history_message),
HumanMessage(content=reset_prompt.replace('{question}', problem_text))]
response = chat_model.invoke(message_list)
padding_problem = problem_text
if response.content.__contains__("<data>") and response.content.__contains__('</data>'):
padding_problem_data = response.content[
response.content.index('<data>') + 6:response.content.index('</data>')]
if padding_problem_data is not None and len(padding_problem_data.strip()) > 0:
padding_problem = padding_problem_data
elif len(response.content) > 0:
padding_problem = response.content
try:
request_token = chat_model.get_num_tokens_from_messages(message_list)
response_token = chat_model.get_num_tokens(padding_problem)
except Exception as e:
request_token = 0
response_token = 0
self.context['message_tokens'] = request_token
self.context['answer_tokens'] = response_token
return padding_problem
def get_details(self, manage, **kwargs):
return {
'step_type': 'problem_padding',
'run_time': self.context['run_time'],
'model_id': str(manage.context['model_id']) if 'model_id' in manage.context else None,
'message_tokens': self.context.get('message_tokens', 0),
'answer_tokens': self.context.get('answer_tokens', 0),
'cost': 0,
'padding_problem_text': self.context.get('padding_problem_text'),
'problem_text': self.context.get("step_args").get('problem_text'),
}

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/1/9 18:24
@desc:
"""

View File

@ -1,77 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_search_dataset_step.py
@date2024/1/9 18:10
@desc: 检索知识库
"""
import re
from abc import abstractmethod
from typing import List, Type
from django.core import validators
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.chat_pipeline.I_base_chat_pipeline import IBaseChatPipelineStep, ParagraphPipelineModel
from application.chat_pipeline.pipeline_manage import PipelineManage
from common.util.field_message import ErrMessage
class ISearchDatasetStep(IBaseChatPipelineStep):
class InstanceSerializer(serializers.Serializer):
# 原始问题文本
problem_text = serializers.CharField(required=True, error_messages=ErrMessage.char(_("question")))
# 系统补全问题文本
padding_problem_text = serializers.CharField(required=False,
error_messages=ErrMessage.char(_("System completes question text")))
# 需要查询的数据集id列表
dataset_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("Dataset id list")))
# 需要排除的文档id
exclude_document_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("List of document ids to exclude")))
# 需要排除向量id
exclude_paragraph_id_list = serializers.ListField(required=True, child=serializers.UUIDField(required=True),
error_messages=ErrMessage.list(_("List of exclusion vector ids")))
# 需要查询的条数
top_n = serializers.IntegerField(required=True,
error_messages=ErrMessage.integer(_("Reference segment number")))
# 相似度 0-1之间
similarity = serializers.FloatField(required=True, max_value=1, min_value=0,
error_messages=ErrMessage.float(_("Similarity")))
search_mode = serializers.CharField(required=True, validators=[
validators.RegexValidator(regex=re.compile("^embedding|keywords|blend$"),
message=_("The type only supports embedding|keywords|blend"), code=500)
], error_messages=ErrMessage.char(_("Retrieval Mode")))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_("User ID")))
def get_step_serializer(self, manage: PipelineManage) -> Type[InstanceSerializer]:
return self.InstanceSerializer
def _run(self, manage: PipelineManage):
paragraph_list = self.execute(**self.context['step_args'])
manage.context['paragraph_list'] = paragraph_list
self.context['paragraph_list'] = paragraph_list
@abstractmethod
def execute(self, problem_text: str, dataset_id_list: list[str], exclude_document_id_list: list[str],
exclude_paragraph_id_list: list[str], top_n: int, similarity: float, padding_problem_text: str = None,
search_mode: str = None,
user_id=None,
**kwargs) -> List[ParagraphPipelineModel]:
"""
关于 用户和补全问题 说明: 补全问题如果有就使用补全问题去查询 反之就用用户原始问题查询
:param similarity: 相关性
:param top_n: 查询多少条
:param problem_text: 用户问题
:param dataset_id_list: 需要查询的数据集id列表
:param exclude_document_id_list: 需要排除的文档id
:param exclude_paragraph_id_list: 需要排除段落id
:param padding_problem_text 补全问题
:param search_mode 检索模式
:param user_id 用户id
:return: 段落列表
"""
pass

View File

@ -1,138 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_search_dataset_step.py
@date2024/1/10 10:33
@desc:
"""
import os
from typing import List, Dict
from django.db.models import QuerySet
from django.utils.translation import gettext_lazy as _
from rest_framework.utils.formatting import lazy_format
from application.chat_pipeline.I_base_chat_pipeline import ParagraphPipelineModel
from application.chat_pipeline.step.search_dataset_step.i_search_dataset_step import ISearchDatasetStep
from common.config.embedding_config import VectorStore, ModelManage
from common.db.search import native_search
from common.util.file_util import get_file_content
from dataset.models import Paragraph, DataSet
from embedding.models import SearchMode
from setting.models import Model
from setting.models_provider import get_model
from smartdoc.conf import PROJECT_DIR
def get_model_by_id(_id, user_id):
model = QuerySet(Model).filter(id=_id).first()
if model is None:
raise Exception(_("Model does not exist"))
if model.permission_type == 'PRIVATE' and str(model.user_id) != str(user_id):
message = lazy_format(_('No permission to use this model {model_name}'), model_name=model.name)
raise Exception(message)
return model
def get_embedding_id(dataset_id_list):
dataset_list = QuerySet(DataSet).filter(id__in=dataset_id_list)
if len(set([dataset.embedding_mode_id for dataset in dataset_list])) > 1:
raise Exception(_("The vector model of the associated knowledge base is inconsistent and the segmentation cannot be recalled."))
if len(dataset_list) == 0:
raise Exception(_("The knowledge base setting is wrong, please reset the knowledge base"))
return dataset_list[0].embedding_mode_id
class BaseSearchDatasetStep(ISearchDatasetStep):
def execute(self, problem_text: str, dataset_id_list: list[str], exclude_document_id_list: list[str],
exclude_paragraph_id_list: list[str], top_n: int, similarity: float, padding_problem_text: str = None,
search_mode: str = None,
user_id=None,
**kwargs) -> List[ParagraphPipelineModel]:
if len(dataset_id_list) == 0:
return []
exec_problem_text = padding_problem_text if padding_problem_text is not None else problem_text
model_id = get_embedding_id(dataset_id_list)
model = get_model_by_id(model_id, user_id)
self.context['model_name'] = model.name
embedding_model = ModelManage.get_model(model_id, lambda _id: get_model(model))
embedding_value = embedding_model.embed_query(exec_problem_text)
vector = VectorStore.get_embedding_vector()
embedding_list = vector.query(exec_problem_text, embedding_value, dataset_id_list, exclude_document_id_list,
exclude_paragraph_id_list, True, top_n, similarity, SearchMode(search_mode))
if embedding_list is None:
return []
paragraph_list = self.list_paragraph(embedding_list, vector)
result = [self.reset_paragraph(paragraph, embedding_list) for paragraph in paragraph_list]
return result
@staticmethod
def reset_paragraph(paragraph: Dict, embedding_list: List) -> ParagraphPipelineModel:
filter_embedding_list = [embedding for embedding in embedding_list if
str(embedding.get('paragraph_id')) == str(paragraph.get('id'))]
if filter_embedding_list is not None and len(filter_embedding_list) > 0:
find_embedding = filter_embedding_list[-1]
return (ParagraphPipelineModel.builder()
.add_paragraph(paragraph)
.add_similarity(find_embedding.get('similarity'))
.add_comprehensive_score(find_embedding.get('comprehensive_score'))
.add_dataset_name(paragraph.get('dataset_name'))
.add_document_name(paragraph.get('document_name'))
.add_hit_handling_method(paragraph.get('hit_handling_method'))
.add_directly_return_similarity(paragraph.get('directly_return_similarity'))
.add_meta(paragraph.get('meta'))
.build())
@staticmethod
def get_similarity(paragraph, embedding_list: List):
filter_embedding_list = [embedding for embedding in embedding_list if
str(embedding.get('paragraph_id')) == str(paragraph.get('id'))]
if filter_embedding_list is not None and len(filter_embedding_list) > 0:
find_embedding = filter_embedding_list[-1]
return find_embedding.get('comprehensive_score')
return 0
@staticmethod
def list_paragraph(embedding_list: List, vector):
paragraph_id_list = [row.get('paragraph_id') for row in embedding_list]
if paragraph_id_list is None or len(paragraph_id_list) == 0:
return []
paragraph_list = native_search(QuerySet(Paragraph).filter(id__in=paragraph_id_list),
get_file_content(
os.path.join(PROJECT_DIR, "apps", "application", 'sql',
'list_dataset_paragraph_by_paragraph_id.sql')),
with_table_name=True)
# 如果向量库中存在脏数据 直接删除
if len(paragraph_list) != len(paragraph_id_list):
exist_paragraph_list = [row.get('id') for row in paragraph_list]
for paragraph_id in paragraph_id_list:
if not exist_paragraph_list.__contains__(paragraph_id):
vector.delete_by_paragraph_id(paragraph_id)
# 如果存在直接返回的则取直接返回段落
hit_handling_method_paragraph = [paragraph for paragraph in paragraph_list if
(paragraph.get(
'hit_handling_method') == 'directly_return' and BaseSearchDatasetStep.get_similarity(
paragraph, embedding_list) >= paragraph.get(
'directly_return_similarity'))]
if len(hit_handling_method_paragraph) > 0:
# 找到评分最高的
return [sorted(hit_handling_method_paragraph,
key=lambda p: BaseSearchDatasetStep.get_similarity(p, embedding_list))[-1]]
return paragraph_list
def get_details(self, manage, **kwargs):
step_args = self.context['step_args']
return {
'step_type': 'search_step',
'paragraph_list': [row.to_dict() for row in self.context['paragraph_list']],
'run_time': self.context['run_time'],
'problem_text': step_args.get(
'padding_problem_text') if 'padding_problem_text' in step_args else step_args.get('problem_text'),
'model_name': self.context.get('model_name'),
'message_tokens': 0,
'answer_tokens': 0,
'cost': 0
}

View File

@ -1,8 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/6/7 14:43
@desc:
"""

View File

@ -1,44 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file common.py
@date2024/12/11 17:57
@desc:
"""
class Answer:
def __init__(self, content, view_type, runtime_node_id, chat_record_id, child_node, real_node_id,
reasoning_content):
self.view_type = view_type
self.content = content
self.reasoning_content = reasoning_content
self.runtime_node_id = runtime_node_id
self.chat_record_id = chat_record_id
self.child_node = child_node
self.real_node_id = real_node_id
def to_dict(self):
return {'view_type': self.view_type, 'content': self.content, 'runtime_node_id': self.runtime_node_id,
'chat_record_id': self.chat_record_id,
'child_node': self.child_node,
'reasoning_content': self.reasoning_content,
'real_node_id': self.real_node_id}
class NodeChunk:
def __init__(self):
self.status = 0
self.chunk_list = []
def add_chunk(self, chunk):
self.chunk_list.append(chunk)
def end(self, chunk=None):
if chunk is not None:
self.add_chunk(chunk)
self.status = 200
def is_end(self):
return self.status == 200

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "基本信息",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "您好,我是 MaxKB 小助手,您可以向我提出 MaxKB 使用问题。\n- MaxKB 主要功能有什么?\n- MaxKB 支持哪些大语言模型?\n- MaxKB 支持哪些文档类型?"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "开始",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "知识库检索",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "判断器",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "指定回复",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 对话",
"node_data": {
"prompt": "已知信息:\n{{知识库检索.data}}\n问题\n{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 对话1",
"node_data": {
"prompt": "{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "Base",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "Hello, I am the MaxKB assistant. You can ask me about MaxKB usage issues.\n-What are the main functions of MaxKB?\n-What major language models does MaxKB support?\n-What document types does MaxKB support?"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "Start",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "Knowledge Search",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "Conditional Branch",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "Specified Reply",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI Chat",
"node_data": {
"prompt": "Known information:\n{{Knowledge Search.data}}\nQuestion:\n{{Start.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI Chat1",
"node_data": {
"prompt": "{{Start.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "基本信息",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "您好,我是 MaxKB 小助手,您可以向我提出 MaxKB 使用问题。\n- MaxKB 主要功能有什么?\n- MaxKB 支持哪些大语言模型?\n- MaxKB 支持哪些文档类型?"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "开始",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "知识库检索",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "判断器",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "指定回复",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 对话",
"node_data": {
"prompt": "已知信息:\n{{知识库检索.data}}\n问题\n{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 对话1",
"node_data": {
"prompt": "{{开始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -1,451 +0,0 @@
{
"nodes": [
{
"id": "base-node",
"type": "base-node",
"x": 360,
"y": 2810,
"properties": {
"config": {
},
"height": 825.6,
"stepName": "基本資訊",
"node_data": {
"desc": "",
"name": "maxkbapplication",
"prologue": "您好我是MaxKB小助手您可以向我提出MaxKB使用問題。\n- MaxKB主要功能有什麼\n- MaxKB支持哪些大語言模型\n- MaxKB支持哪些文檔類型"
},
"input_field_list": [
]
}
},
{
"id": "start-node",
"type": "start-node",
"x": 430,
"y": 3660,
"properties": {
"config": {
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
},
"fields": [
{
"label": "用户问题",
"value": "question"
}
],
"height": 276,
"stepName": "開始",
"globalFields": [
{
"label": "当前时间",
"value": "time"
}
]
}
},
{
"id": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"type": "search-dataset-node",
"x": 840,
"y": 3210,
"properties": {
"config": {
"fields": [
{
"label": "检索结果的分段列表",
"value": "paragraph_list"
},
{
"label": "满足直接回答的分段列表",
"value": "is_hit_handling_method_list"
},
{
"label": "检索结果",
"value": "data"
},
{
"label": "满足直接回答的分段内容",
"value": "directly_return"
}
]
},
"height": 794,
"stepName": "知識庫檢索",
"node_data": {
"dataset_id_list": [
],
"dataset_setting": {
"top_n": 3,
"similarity": 0.6,
"search_mode": "embedding",
"max_paragraph_char_number": 5000
},
"question_reference_address": [
"start-node",
"question"
],
"source_dataset_id_list": [
]
}
}
},
{
"id": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"type": "condition-node",
"x": 1490,
"y": 3210,
"properties": {
"width": 600,
"config": {
"fields": [
{
"label": "分支名称",
"value": "branch_name"
}
]
},
"height": 543.675,
"stepName": "判斷器",
"node_data": {
"branch": [
{
"id": "1009",
"type": "IF",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"is_hit_handling_method_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "4908",
"type": "ELSE IF 1",
"condition": "and",
"conditions": [
{
"field": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"paragraph_list"
],
"value": "1",
"compare": "len_ge"
}
]
},
{
"id": "161",
"type": "ELSE",
"condition": "and",
"conditions": [
]
}
]
},
"branch_condition_list": [
{
"index": 0,
"height": 121.225,
"id": "1009"
},
{
"index": 1,
"height": 121.225,
"id": "4908"
},
{
"index": 2,
"height": 44,
"id": "161"
}
]
}
},
{
"id": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"type": "reply-node",
"x": 2170,
"y": 2480,
"properties": {
"config": {
"fields": [
{
"label": "内容",
"value": "answer"
}
]
},
"height": 378,
"stepName": "指定回覆",
"node_data": {
"fields": [
"b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"directly_return"
],
"content": "",
"reply_type": "referencing",
"is_result": true
}
}
},
{
"id": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"type": "ai-chat-node",
"x": 2160,
"y": 3200,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 對話",
"node_data": {
"prompt": "已知資訊:\n{{知識庫檢索.data}}\n問題\n{{開始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
},
{
"id": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"type": "ai-chat-node",
"x": 2160,
"y": 3970,
"properties": {
"config": {
"fields": [
{
"label": "AI 回答内容",
"value": "answer"
}
]
},
"height": 763,
"stepName": "AI 對話1",
"node_data": {
"prompt": "{{開始.question}}",
"system": "",
"model_id": "",
"dialogue_number": 0,
"is_result": true
}
}
}
],
"edges": [
{
"id": "7d0f166f-c472-41b2-b9a2-c294f4c83d73",
"type": "app-edge",
"sourceNodeId": "start-node",
"targetNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"startPoint": {
"x": 590,
"y": 3660
},
"endPoint": {
"x": 680,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 590,
"y": 3660
},
{
"x": 700,
"y": 3660
},
{
"x": 570,
"y": 3210
},
{
"x": 680,
"y": 3210
}
],
"sourceAnchorId": "start-node_right",
"targetAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_left"
},
{
"id": "35cb86dd-f328-429e-a973-12fd7218b696",
"type": "app-edge",
"sourceNodeId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5",
"targetNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"startPoint": {
"x": 1000,
"y": 3210
},
"endPoint": {
"x": 1200,
"y": 3210
},
"properties": {
},
"pointsList": [
{
"x": 1000,
"y": 3210
},
{
"x": 1110,
"y": 3210
},
{
"x": 1090,
"y": 3210
},
{
"x": 1200,
"y": 3210
}
],
"sourceAnchorId": "b931efe5-5b66-46e0-ae3b-0160cb18eeb5_right",
"targetAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_left"
},
{
"id": "e8f6cfe6-7e48-41cd-abd3-abfb5304d0d8",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "4ffe1086-25df-4c85-b168-979b5bbf0a26",
"startPoint": {
"x": 1780,
"y": 3073.775
},
"endPoint": {
"x": 2010,
"y": 2480
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3073.775
},
{
"x": 1890,
"y": 3073.775
},
{
"x": 1900,
"y": 2480
},
{
"x": 2010,
"y": 2480
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_1009_right",
"targetAnchorId": "4ffe1086-25df-4c85-b168-979b5bbf0a26_left"
},
{
"id": "994ff325-6f7a-4ebc-b61b-10e15519d6d2",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb",
"startPoint": {
"x": 1780,
"y": 3203
},
"endPoint": {
"x": 2000,
"y": 3200
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3203
},
{
"x": 1890,
"y": 3203
},
{
"x": 1890,
"y": 3200
},
{
"x": 2000,
"y": 3200
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_4908_right",
"targetAnchorId": "f1f1ee18-5a02-46f6-b4e6-226253cdffbb_left"
},
{
"id": "19270caf-bb9f-4ba7-9bf8-200aa70fecd5",
"type": "app-edge",
"sourceNodeId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b",
"targetNodeId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7",
"startPoint": {
"x": 1780,
"y": 3293.6124999999997
},
"endPoint": {
"x": 2000,
"y": 3970
},
"properties": {
},
"pointsList": [
{
"x": 1780,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3293.6124999999997
},
{
"x": 1890,
"y": 3970
},
{
"x": 2000,
"y": 3970
}
],
"sourceAnchorId": "fc60863a-dec2-4854-9e5a-7a44b7187a2b_161_right",
"targetAnchorId": "309d0eef-c597-46b5-8d51-b9a28aaef4c7_left"
}
]
}

View File

@ -1,256 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_step_node.py
@date2024/6/3 14:57
@desc:
"""
import time
import uuid
from abc import abstractmethod
from hashlib import sha1
from typing import Type, Dict, List
from django.core import cache
from django.db.models import QuerySet
from rest_framework import serializers
from rest_framework.exceptions import ValidationError, ErrorDetail
from application.flow.common import Answer, NodeChunk
from application.models import ChatRecord
from application.models.api_key_model import ApplicationPublicAccessClient
from common.constants.authentication_type import AuthenticationType
from common.field.common import InstanceField
from common.util.field_message import ErrMessage
chat_cache = cache.caches['chat_cache']
def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'answer' in step_variable:
answer = step_variable['answer']
yield answer
node.answer_text = answer
if global_variable is not None:
for key in global_variable:
workflow.context[key] = global_variable[key]
node.context['run_time'] = time.time() - node.context['start_time']
def is_interrupt(node, step_variable: Dict, global_variable: Dict):
return node.type == 'form-node' and not node.context.get('is_submit', False)
class WorkFlowPostHandler:
def __init__(self, chat_info, client_id, client_type):
self.chat_info = chat_info
self.client_id = client_id
self.client_type = client_type
def handler(self, chat_id,
chat_record_id,
answer,
workflow):
question = workflow.params['question']
details = workflow.get_runtime_details()
message_tokens = sum([row.get('message_tokens') for row in details.values() if
'message_tokens' in row and row.get('message_tokens') is not None])
answer_tokens = sum([row.get('answer_tokens') for row in details.values() if
'answer_tokens' in row and row.get('answer_tokens') is not None])
answer_text_list = workflow.get_answer_text_list()
answer_text = '\n\n'.join(
'\n\n'.join([a.get('content') for a in answer]) for answer in
answer_text_list)
if workflow.chat_record is not None:
chat_record = workflow.chat_record
chat_record.answer_text = answer_text
chat_record.details = details
chat_record.message_tokens = message_tokens
chat_record.answer_tokens = answer_tokens
chat_record.answer_text_list = answer_text_list
chat_record.run_time = time.time() - workflow.context['start_time']
else:
chat_record = ChatRecord(id=chat_record_id,
chat_id=chat_id,
problem_text=question,
answer_text=answer_text,
details=details,
message_tokens=message_tokens,
answer_tokens=answer_tokens,
answer_text_list=answer_text_list,
run_time=time.time() - workflow.context['start_time'],
index=0)
asker = workflow.context.get('asker', None)
self.chat_info.append_chat_record(chat_record, self.client_id, asker)
# 重新设置缓存
chat_cache.set(chat_id,
self.chat_info, timeout=60 * 30)
if self.client_type == AuthenticationType.APPLICATION_ACCESS_TOKEN.value:
application_public_access_client = (QuerySet(ApplicationPublicAccessClient)
.filter(client_id=self.client_id,
application_id=self.chat_info.application.id).first())
if application_public_access_client is not None:
application_public_access_client.access_num = application_public_access_client.access_num + 1
application_public_access_client.intraday_access_num = application_public_access_client.intraday_access_num + 1
application_public_access_client.save()
class NodeResult:
def __init__(self, node_variable: Dict, workflow_variable: Dict,
_write_context=write_context, _is_interrupt=is_interrupt):
self._write_context = _write_context
self.node_variable = node_variable
self.workflow_variable = workflow_variable
self._is_interrupt = _is_interrupt
def write_context(self, node, workflow):
return self._write_context(self.node_variable, self.workflow_variable, node, workflow)
def is_assertion_result(self):
return 'branch_id' in self.node_variable
def is_interrupt_exec(self, current_node):
"""
是否中断执行
@param current_node:
@return:
"""
return self._is_interrupt(current_node, self.node_variable, self.workflow_variable)
class ReferenceAddressSerializer(serializers.Serializer):
node_id = serializers.CharField(required=True, error_messages=ErrMessage.char("节点id"))
fields = serializers.ListField(
child=serializers.CharField(required=True, error_messages=ErrMessage.char("节点字段")), required=True,
error_messages=ErrMessage.list("节点字段数组"))
class FlowParamsSerializer(serializers.Serializer):
# 历史对答
history_chat_record = serializers.ListField(child=InstanceField(model_type=ChatRecord, required=True),
error_messages=ErrMessage.list("历史对答"))
question = serializers.CharField(required=True, error_messages=ErrMessage.list("用户问题"))
chat_id = serializers.CharField(required=True, error_messages=ErrMessage.list("对话id"))
chat_record_id = serializers.CharField(required=True, error_messages=ErrMessage.char("对话记录id"))
stream = serializers.BooleanField(required=True, error_messages=ErrMessage.boolean("流式输出"))
client_id = serializers.CharField(required=False, error_messages=ErrMessage.char("客户端id"))
client_type = serializers.CharField(required=False, error_messages=ErrMessage.char("客户端类型"))
user_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid("用户id"))
re_chat = serializers.BooleanField(required=True, error_messages=ErrMessage.boolean("换个答案"))
class INode:
view_type = 'many_view'
@abstractmethod
def save_context(self, details, workflow_manage):
pass
def get_answer_list(self) -> List[Answer] | None:
if self.answer_text is None:
return None
reasoning_content_enable = self.context.get('model_setting', {}).get('reasoning_content_enable', False)
return [
Answer(self.answer_text, self.view_type, self.runtime_node_id, self.workflow_params['chat_record_id'], {},
self.runtime_node_id, self.context.get('reasoning_content', '') if reasoning_content_enable else '')]
def __init__(self, node, workflow_params, workflow_manage, up_node_id_list=None,
get_node_params=lambda node: node.properties.get('node_data')):
# 当前步骤上下文,用于存储当前步骤信息
self.status = 200
self.err_message = ''
self.node = node
self.node_params = get_node_params(node)
self.workflow_params = workflow_params
self.workflow_manage = workflow_manage
self.node_params_serializer = None
self.flow_params_serializer = None
self.context = {}
self.answer_text = None
self.id = node.id
if up_node_id_list is None:
up_node_id_list = []
self.up_node_id_list = up_node_id_list
self.node_chunk = NodeChunk()
self.runtime_node_id = sha1(uuid.NAMESPACE_DNS.bytes + bytes(str(uuid.uuid5(uuid.NAMESPACE_DNS,
"".join([*sorted(up_node_id_list),
node.id]))),
"utf-8")).hexdigest()
def valid_args(self, node_params, flow_params):
flow_params_serializer_class = self.get_flow_params_serializer_class()
node_params_serializer_class = self.get_node_params_serializer_class()
if flow_params_serializer_class is not None and flow_params is not None:
self.flow_params_serializer = flow_params_serializer_class(data=flow_params)
self.flow_params_serializer.is_valid(raise_exception=True)
if node_params_serializer_class is not None:
self.node_params_serializer = node_params_serializer_class(data=node_params)
self.node_params_serializer.is_valid(raise_exception=True)
if self.node.properties.get('status', 200) != 200:
raise ValidationError(ErrorDetail(f'节点{self.node.properties.get("stepName")} 不可用'))
def get_reference_field(self, fields: List[str]):
return self.get_field(self.context, fields)
@staticmethod
def get_field(obj, fields: List[str]):
for field in fields:
value = obj.get(field)
if value is None:
return None
else:
obj = value
return obj
@abstractmethod
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
pass
def get_flow_params_serializer_class(self) -> Type[serializers.Serializer]:
return FlowParamsSerializer
def get_write_error_context(self, e):
self.status = 500
self.answer_text = str(e)
self.err_message = str(e)
self.context['run_time'] = time.time() - self.context['start_time']
def write_error_context(answer, status=200):
pass
return write_error_context
def run(self) -> NodeResult:
"""
:return: 执行结果
"""
start_time = time.time()
self.context['start_time'] = start_time
result = self._run()
self.context['run_time'] = time.time() - start_time
return result
def _run(self):
result = self.execute()
return result
def execute(self, **kwargs) -> NodeResult:
pass
def get_details(self, index: int, **kwargs):
"""
运行详情
:return: 步骤详情
"""
return {}

View File

@ -1,42 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/6/7 14:43
@desc:
"""
from .ai_chat_step_node import *
from .application_node import BaseApplicationNode
from .condition_node import *
from .direct_reply_node import *
from .form_node import *
from .function_lib_node import *
from .function_node import *
from .question_node import *
from .reranker_node import *
from .document_extract_node import *
from .image_understand_step_node import *
from .image_generate_step_node import *
from .search_dataset_node import *
from .speech_to_text_step_node import BaseSpeechToTextNode
from .start_node import *
from .text_to_speech_step_node.impl.base_text_to_speech_node import BaseTextToSpeechNode
from .variable_assign_node import BaseVariableAssignNode
from .mcp_node import BaseMcpNode
node_list = [BaseStartStepNode, BaseChatNode, BaseSearchDatasetNode, BaseQuestionNode,
BaseConditionNode, BaseReplyNode,
BaseFunctionNodeNode, BaseFunctionLibNodeNode, BaseRerankerNode, BaseApplicationNode,
BaseDocumentExtractNode,
BaseImageUnderstandNode, BaseFormNode, BaseSpeechToTextNode, BaseTextToSpeechNode,
BaseImageGenerateNode, BaseVariableAssignNode, BaseMcpNode]
def get_node(node_type):
find_list = [node for node in node_list if node.type == node_type]
if len(find_list) > 0:
return find_list[0]
return None

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py
@date2024/6/11 15:29
@desc:
"""
from .impl import *

View File

@ -1,58 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_chat_node.py
@date2024/6/4 13:58
@desc:
"""
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
class ChatNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
system = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Role Setting")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(
_("Number of multi-round conversations")))
is_result = serializers.BooleanField(required=False,
error_messages=ErrMessage.boolean(_('Whether to return content')))
model_params_setting = serializers.DictField(required=False,
error_messages=ErrMessage.dict(_("Model parameter settings")))
model_setting = serializers.DictField(required=False,
error_messages=ErrMessage.dict('Model settings'))
dialogue_type = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Context Type")))
mcp_enable = serializers.BooleanField(required=False,
error_messages=ErrMessage.boolean(_("Whether to enable MCP")))
mcp_servers = serializers.JSONField(required=False, error_messages=ErrMessage.list(_("MCP Server")))
class IChatNode(INode):
type = 'ai-chat-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ChatNodeSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, model_id, system, prompt, dialogue_number, history_chat_record, stream, chat_id,
chat_record_id,
model_params_setting=None,
dialogue_type=None,
model_setting=None,
mcp_enable=False,
mcp_servers=None,
**kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py
@date2024/6/11 15:34
@desc:
"""
from .base_chat_node import BaseChatNode

View File

@ -1,285 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_question_node.py
@date2024/6/4 14:30
@desc:
"""
import asyncio
import json
import re
import time
from functools import reduce
from types import AsyncGeneratorType
from typing import List, Dict
from django.db.models import QuerySet
from langchain.schema import HumanMessage, SystemMessage
from langchain_core.messages import BaseMessage, AIMessage, AIMessageChunk, ToolMessage
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.ai_chat_step_node.i_chat_node import IChatNode
from application.flow.tools import Reasoning
from setting.models import Model
from setting.models_provider import get_model_credential
from setting.models_provider.tools import get_model_instance_by_model_user_id
tool_message_template = """
<details>
<summary>
<strong>Called MCP Tool: <em>%s</em></strong>
</summary>
```json
%s
```
</details>
"""
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str,
reasoning_content: str):
chat_model = node_variable.get('chat_model')
message_tokens = chat_model.get_num_tokens_from_messages(node_variable.get('message_list'))
answer_tokens = chat_model.get_num_tokens(answer)
node.context['message_tokens'] = message_tokens
node.context['answer_tokens'] = answer_tokens
node.context['answer'] = answer
node.context['history_message'] = node_variable['history_message']
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
node.context['reasoning_content'] = reasoning_content
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据 (流式)
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = ''
reasoning_content = ''
model_setting = node.context.get('model_setting',
{'reasoning_content_enable': False, 'reasoning_content_end': '</think>',
'reasoning_content_start': '<think>'})
reasoning = Reasoning(model_setting.get('reasoning_content_start', '<think>'),
model_setting.get('reasoning_content_end', '</think>'))
response_reasoning_content = False
for chunk in response:
reasoning_chunk = reasoning.get_reasoning_content(chunk)
content_chunk = reasoning_chunk.get('content')
if 'reasoning_content' in chunk.additional_kwargs:
response_reasoning_content = True
reasoning_content_chunk = chunk.additional_kwargs.get('reasoning_content', '')
else:
reasoning_content_chunk = reasoning_chunk.get('reasoning_content')
answer += content_chunk
if reasoning_content_chunk is None:
reasoning_content_chunk = ''
reasoning_content += reasoning_content_chunk
yield {'content': content_chunk,
'reasoning_content': reasoning_content_chunk if model_setting.get('reasoning_content_enable',
False) else ''}
reasoning_chunk = reasoning.get_end_reasoning_content()
answer += reasoning_chunk.get('content')
reasoning_content_chunk = ""
if not response_reasoning_content:
reasoning_content_chunk = reasoning_chunk.get(
'reasoning_content')
yield {'content': reasoning_chunk.get('content'),
'reasoning_content': reasoning_content_chunk if model_setting.get('reasoning_content_enable',
False) else ''}
_write_context(node_variable, workflow_variable, node, workflow, answer, reasoning_content)
async def _yield_mcp_response(chat_model, message_list, mcp_servers):
async with MultiServerMCPClient(json.loads(mcp_servers)) as client:
agent = create_react_agent(chat_model, client.get_tools())
response = agent.astream({"messages": message_list}, stream_mode='messages')
async for chunk in response:
if isinstance(chunk[0], ToolMessage):
content = tool_message_template % (chunk[0].name, chunk[0].content)
chunk[0].content = content
yield chunk[0]
if isinstance(chunk[0], AIMessageChunk):
yield chunk[0]
def mcp_response_generator(chat_model, message_list, mcp_servers):
loop = asyncio.new_event_loop()
try:
async_gen = _yield_mcp_response(chat_model, message_list, mcp_servers)
while True:
try:
chunk = loop.run_until_complete(anext_async(async_gen))
yield chunk
except StopAsyncIteration:
break
except Exception as e:
print(f'exception: {e}')
finally:
loop.close()
async def anext_async(agen):
return await agen.__anext__()
def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点实例对象
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
model_setting = node.context.get('model_setting',
{'reasoning_content_enable': False, 'reasoning_content_end': '</think>',
'reasoning_content_start': '<think>'})
reasoning = Reasoning(model_setting.get('reasoning_content_start'), model_setting.get('reasoning_content_end'))
reasoning_result = reasoning.get_reasoning_content(response)
reasoning_result_end = reasoning.get_end_reasoning_content()
content = reasoning_result.get('content') + reasoning_result_end.get('content')
if 'reasoning_content' in response.response_metadata:
reasoning_content = response.response_metadata.get('reasoning_content', '')
else:
reasoning_content = reasoning_result.get('reasoning_content') + reasoning_result_end.get('reasoning_content')
_write_context(node_variable, workflow_variable, node, workflow, content, reasoning_content)
def get_default_model_params_setting(model_id):
model = QuerySet(Model).filter(id=model_id).first()
credential = get_model_credential(model.provider, model.model_type, model.model_name)
model_params_setting = credential.get_model_params_setting_form(
model.model_name).get_default_form_data()
return model_params_setting
def get_node_message(chat_record, runtime_node_id):
node_details = chat_record.get_node_details_runtime_node_id(runtime_node_id)
if node_details is None:
return []
return [HumanMessage(node_details.get('question')), AIMessage(node_details.get('answer'))]
def get_workflow_message(chat_record):
return [chat_record.get_human_message(), chat_record.get_ai_message()]
def get_message(chat_record, dialogue_type, runtime_node_id):
return get_node_message(chat_record, runtime_node_id) if dialogue_type == 'NODE' else get_workflow_message(
chat_record)
class BaseChatNode(IChatNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['question'] = details.get('question')
self.context['reasoning_content'] = details.get('reasoning_content')
self.answer_text = details.get('answer')
def execute(self, model_id, system, prompt, dialogue_number, history_chat_record, stream, chat_id, chat_record_id,
model_params_setting=None,
dialogue_type=None,
model_setting=None,
mcp_enable=False,
mcp_servers=None,
**kwargs) -> NodeResult:
if dialogue_type is None:
dialogue_type = 'WORKFLOW'
if model_params_setting is None:
model_params_setting = get_default_model_params_setting(model_id)
if model_setting is None:
model_setting = {'reasoning_content_enable': False, 'reasoning_content_end': '</think>',
'reasoning_content_start': '<think>'}
self.context['model_setting'] = model_setting
chat_model = get_model_instance_by_model_user_id(model_id, self.flow_params_serializer.data.get('user_id'),
**model_params_setting)
history_message = self.get_history_message(history_chat_record, dialogue_number, dialogue_type,
self.runtime_node_id)
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question.content
system = self.workflow_manage.generate_prompt(system)
self.context['system'] = system
message_list = self.generate_message_list(system, prompt, history_message)
self.context['message_list'] = message_list
if mcp_enable and mcp_servers is not None:
r = mcp_response_generator(chat_model, message_list, mcp_servers)
return NodeResult(
{'result': r, 'chat_model': chat_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context_stream)
if stream:
r = chat_model.stream(message_list)
return NodeResult({'result': r, 'chat_model': chat_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context_stream)
else:
r = chat_model.invoke(message_list)
return NodeResult({'result': r, 'chat_model': chat_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context)
@staticmethod
def get_history_message(history_chat_record, dialogue_number, dialogue_type, runtime_node_id):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
get_message(history_chat_record[index], dialogue_type, runtime_node_id)
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
for message in history_message:
if isinstance(message.content, str):
message.content = re.sub('<form_rander>[\d\D]*?<\/form_rander>', '', message.content)
return history_message
def generate_prompt_question(self, prompt):
return HumanMessage(self.workflow_manage.generate_prompt(prompt))
def generate_message_list(self, system: str, prompt: str, history_message):
if system is not None and len(system) > 0:
return [SystemMessage(self.workflow_manage.generate_prompt(system)), *history_message,
HumanMessage(self.workflow_manage.generate_prompt(prompt))]
else:
return [*history_message, HumanMessage(self.workflow_manage.generate_prompt(prompt))]
@staticmethod
def reset_message_list(message_list: List[BaseMessage], answer_text):
result = [{'role': 'user' if isinstance(message, HumanMessage) else 'ai', 'content': message.content} for
message
in
message_list]
result.append({'role': 'ai', 'content': answer_text})
return result
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'system': self.context.get('system'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'reasoning_content': self.context.get('reasoning_content'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message
}

View File

@ -1,2 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,86 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ApplicationNodeSerializer(serializers.Serializer):
application_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Application ID")))
question_reference_address = serializers.ListField(required=True,
error_messages=ErrMessage.list(_("User Questions")))
api_input_field_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("API Input Fields")))
user_input_field_list = serializers.ListField(required=False,
error_messages=ErrMessage.uuid(_("User Input Fields")))
image_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("picture")))
document_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("document")))
audio_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("Audio")))
child_node = serializers.DictField(required=False, allow_null=True,
error_messages=ErrMessage.dict(_("Child Nodes")))
node_data = serializers.DictField(required=False, allow_null=True, error_messages=ErrMessage.dict(_("Form Data")))
class IApplicationNode(INode):
type = 'application-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ApplicationNodeSerializer
def _run(self):
question = self.workflow_manage.get_reference_field(
self.node_params_serializer.data.get('question_reference_address')[0],
self.node_params_serializer.data.get('question_reference_address')[1:])
kwargs = {}
for api_input_field in self.node_params_serializer.data.get('api_input_field_list', []):
value = api_input_field.get('value', [''])[0] if api_input_field.get('value') else ''
kwargs[api_input_field['variable']] = self.workflow_manage.get_reference_field(value,
api_input_field['value'][
1:]) if value != '' else ''
for user_input_field in self.node_params_serializer.data.get('user_input_field_list', []):
value = user_input_field.get('value', [''])[0] if user_input_field.get('value') else ''
kwargs[user_input_field['field']] = self.workflow_manage.get_reference_field(value,
user_input_field['value'][
1:]) if value != '' else ''
# 判断是否包含这个属性
app_document_list = self.node_params_serializer.data.get('document_list', [])
if app_document_list and len(app_document_list) > 0:
app_document_list = self.workflow_manage.get_reference_field(
app_document_list[0],
app_document_list[1:])
for document in app_document_list:
if 'file_id' not in document:
raise ValueError(
_("Parameter value error: The uploaded document lacks file_id, and the document upload fails"))
app_image_list = self.node_params_serializer.data.get('image_list', [])
if app_image_list and len(app_image_list) > 0:
app_image_list = self.workflow_manage.get_reference_field(
app_image_list[0],
app_image_list[1:])
for image in app_image_list:
if 'file_id' not in image:
raise ValueError(
_("Parameter value error: The uploaded image lacks file_id, and the image upload fails"))
app_audio_list = self.node_params_serializer.data.get('audio_list', [])
if app_audio_list and len(app_audio_list) > 0:
app_audio_list = self.workflow_manage.get_reference_field(
app_audio_list[0],
app_audio_list[1:])
for audio in app_audio_list:
if 'file_id' not in audio:
raise ValueError(
_("Parameter value error: The uploaded audio lacks file_id, and the audio upload fails."))
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data,
app_document_list=app_document_list, app_image_list=app_image_list,
app_audio_list=app_audio_list,
message=str(question), **kwargs)
def execute(self, application_id, message, chat_id, chat_record_id, stream, re_chat, client_id, client_type,
app_document_list=None, app_image_list=None, app_audio_list=None, child_node=None, node_data=None,
**kwargs) -> NodeResult:
pass

View File

@ -1,2 +0,0 @@
# coding=utf-8
from .base_application_node import BaseApplicationNode

View File

@ -1,265 +0,0 @@
# coding=utf-8
import json
import re
import time
import uuid
from typing import Dict, List
from application.flow.common import Answer
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.application_node.i_application_node import IApplicationNode
from application.models import Chat
def string_to_uuid(input_str):
return str(uuid.uuid5(uuid.NAMESPACE_DNS, input_str))
def _is_interrupt_exec(node, node_variable: Dict, workflow_variable: Dict):
return node_variable.get('is_interrupt_exec', False)
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str,
reasoning_content: str):
result = node_variable.get('result')
node.context['application_node_dict'] = node_variable.get('application_node_dict')
node.context['node_dict'] = node_variable.get('node_dict', {})
node.context['is_interrupt_exec'] = node_variable.get('is_interrupt_exec')
node.context['message_tokens'] = result.get('usage', {}).get('prompt_tokens', 0)
node.context['answer_tokens'] = result.get('usage', {}).get('completion_tokens', 0)
node.context['answer'] = answer
node.context['result'] = answer
node.context['reasoning_content'] = reasoning_content
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据 (流式)
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = ''
reasoning_content = ''
usage = {}
node_child_node = {}
application_node_dict = node.context.get('application_node_dict', {})
is_interrupt_exec = False
for chunk in response:
# 先把流转成字符串
response_content = chunk.decode('utf-8')[6:]
response_content = json.loads(response_content)
content = response_content.get('content', '')
runtime_node_id = response_content.get('runtime_node_id', '')
chat_record_id = response_content.get('chat_record_id', '')
child_node = response_content.get('child_node')
view_type = response_content.get('view_type')
node_type = response_content.get('node_type')
real_node_id = response_content.get('real_node_id')
node_is_end = response_content.get('node_is_end', False)
_reasoning_content = response_content.get('reasoning_content', '')
if node_type == 'form-node':
is_interrupt_exec = True
answer += content
reasoning_content += _reasoning_content
node_child_node = {'runtime_node_id': runtime_node_id, 'chat_record_id': chat_record_id,
'child_node': child_node}
if real_node_id is not None:
application_node = application_node_dict.get(real_node_id, None)
if application_node is None:
application_node_dict[real_node_id] = {'content': content,
'runtime_node_id': runtime_node_id,
'chat_record_id': chat_record_id,
'child_node': child_node,
'index': len(application_node_dict),
'view_type': view_type,
'reasoning_content': _reasoning_content}
else:
application_node['content'] += content
application_node['reasoning_content'] += _reasoning_content
yield {'content': content,
'node_type': node_type,
'runtime_node_id': runtime_node_id, 'chat_record_id': chat_record_id,
'reasoning_content': _reasoning_content,
'child_node': child_node,
'real_node_id': real_node_id,
'node_is_end': node_is_end,
'view_type': view_type}
usage = response_content.get('usage', {})
node_variable['result'] = {'usage': usage}
node_variable['is_interrupt_exec'] = is_interrupt_exec
node_variable['child_node'] = node_child_node
node_variable['application_node_dict'] = application_node_dict
_write_context(node_variable, workflow_variable, node, workflow, answer, reasoning_content)
def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点实例对象
@param workflow: 工作流管理器
"""
response = node_variable.get('result', {}).get('data', {})
node_variable['result'] = {'usage': {'completion_tokens': response.get('completion_tokens'),
'prompt_tokens': response.get('prompt_tokens')}}
answer = response.get('content', '') or "抱歉,没有查找到相关内容,请重新描述您的问题或提供更多信息。"
reasoning_content = response.get('reasoning_content', '')
answer_list = response.get('answer_list', [])
node_variable['application_node_dict'] = {answer.get('real_node_id'): {**answer, 'index': index} for answer, index
in
zip(answer_list, range(len(answer_list)))}
_write_context(node_variable, workflow_variable, node, workflow, answer, reasoning_content)
def reset_application_node_dict(application_node_dict, runtime_node_id, node_data):
try:
if application_node_dict is None:
return
for key in application_node_dict:
application_node = application_node_dict[key]
if application_node.get('runtime_node_id') == runtime_node_id:
content: str = application_node.get('content')
match = re.search('<form_rander>.*?</form_rander>', content)
if match:
form_setting_str = match.group().replace('<form_rander>', '').replace('</form_rander>', '')
form_setting = json.loads(form_setting_str)
form_setting['is_submit'] = True
form_setting['form_data'] = node_data
value = f'<form_rander>{json.dumps(form_setting)}</form_rander>'
res = re.sub('<form_rander>.*?</form_rander>',
'${value}', content)
application_node['content'] = res.replace('${value}', value)
except Exception as e:
pass
class BaseApplicationNode(IApplicationNode):
def get_answer_list(self) -> List[Answer] | None:
if self.answer_text is None:
return None
application_node_dict = self.context.get('application_node_dict')
if application_node_dict is None or len(application_node_dict) == 0:
return [
Answer(self.answer_text, self.view_type, self.runtime_node_id, self.workflow_params['chat_record_id'],
self.context.get('child_node'), self.runtime_node_id, '')]
else:
return [Answer(n.get('content'), n.get('view_type'), self.runtime_node_id,
self.workflow_params['chat_record_id'], {'runtime_node_id': n.get('runtime_node_id'),
'chat_record_id': n.get('chat_record_id')
, 'child_node': n.get('child_node')}, n.get('real_node_id'),
n.get('reasoning_content', ''))
for n in
sorted(application_node_dict.values(), key=lambda item: item.get('index'))]
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['result'] = details.get('answer')
self.context['question'] = details.get('question')
self.context['type'] = details.get('type')
self.context['reasoning_content'] = details.get('reasoning_content')
self.answer_text = details.get('answer')
def execute(self, application_id, message, chat_id, chat_record_id, stream, re_chat, client_id, client_type,
app_document_list=None, app_image_list=None, app_audio_list=None, child_node=None, node_data=None,
**kwargs) -> NodeResult:
from application.serializers.chat_message_serializers import ChatMessageSerializer
# 生成嵌入应用的chat_id
current_chat_id = string_to_uuid(chat_id + application_id)
Chat.objects.get_or_create(id=current_chat_id, defaults={
'application_id': application_id,
'abstract': message[0:1024]
})
if app_document_list is None:
app_document_list = []
if app_image_list is None:
app_image_list = []
if app_audio_list is None:
app_audio_list = []
runtime_node_id = None
record_id = None
child_node_value = None
if child_node is not None:
runtime_node_id = child_node.get('runtime_node_id')
record_id = child_node.get('chat_record_id')
child_node_value = child_node.get('child_node')
application_node_dict = self.context.get('application_node_dict')
reset_application_node_dict(application_node_dict, runtime_node_id, node_data)
response = ChatMessageSerializer(
data={'chat_id': current_chat_id, 'message': message,
're_chat': re_chat,
'stream': stream,
'application_id': application_id,
'client_id': client_id,
'client_type': client_type,
'document_list': app_document_list,
'image_list': app_image_list,
'audio_list': app_audio_list,
'runtime_node_id': runtime_node_id,
'chat_record_id': record_id,
'child_node': child_node_value,
'node_data': node_data,
'form_data': kwargs}).chat()
if response.status_code == 200:
if stream:
content_generator = response.streaming_content
return NodeResult({'result': content_generator, 'question': message}, {},
_write_context=write_context_stream, _is_interrupt=_is_interrupt_exec)
else:
data = json.loads(response.content)
return NodeResult({'result': data, 'question': message}, {},
_write_context=write_context, _is_interrupt=_is_interrupt_exec)
def get_details(self, index: int, **kwargs):
global_fields = []
for api_input_field in self.node_params_serializer.data.get('api_input_field_list', []):
value = api_input_field.get('value', [''])[0] if api_input_field.get('value') else ''
global_fields.append({
'label': api_input_field['variable'],
'key': api_input_field['variable'],
'value': self.workflow_manage.get_reference_field(
value,
api_input_field['value'][1:]
) if value != '' else ''
})
for user_input_field in self.node_params_serializer.data.get('user_input_field_list', []):
value = user_input_field.get('value', [''])[0] if user_input_field.get('value') else ''
global_fields.append({
'label': user_input_field['label'],
'key': user_input_field['field'],
'value': self.workflow_manage.get_reference_field(
value,
user_input_field['value'][1:]
) if value != '' else ''
})
return {
'name': self.node.properties.get('stepName'),
"index": index,
"info": self.node.properties.get('node_data'),
'run_time': self.context.get('run_time'),
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'reasoning_content': self.context.get('reasoning_content'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message,
'global_fields': global_fields,
'document_list': self.workflow_manage.document_list,
'image_list': self.workflow_manage.image_list,
'audio_list': self.workflow_manage.audio_list,
'application_node_dict': self.context.get('application_node_dict')
}

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/6/7 14:43
@desc:
"""
from .impl import *

View File

@ -1,30 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/6/7 14:43
@desc:
"""
from .contain_compare import *
from .equal_compare import *
from .ge_compare import *
from .gt_compare import *
from .is_not_null_compare import *
from .is_not_true import IsNotTrueCompare
from .is_null_compare import *
from .is_true import IsTrueCompare
from .le_compare import *
from .len_equal_compare import *
from .len_ge_compare import *
from .len_gt_compare import *
from .len_le_compare import *
from .len_lt_compare import *
from .lt_compare import *
from .not_contain_compare import *
compare_handle_list = [GECompare(), GTCompare(), ContainCompare(), EqualCompare(), LTCompare(), LECompare(),
LenLECompare(), LenGECompare(), LenEqualCompare(), LenGTCompare(), LenLTCompare(),
IsNullCompare(),
IsNotNullCompare(), NotContainCompare(), IsTrueCompare(), IsNotTrueCompare()]

View File

@ -1,20 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file compare.py
@date2024/6/7 14:37
@desc:
"""
from abc import abstractmethod
from typing import List
class Compare:
@abstractmethod
def support(self, node_id, fields: List[str], source_value, compare, target_value):
pass
@abstractmethod
def compare(self, source_value, compare, target_value):
pass

View File

@ -1,23 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file contain_compare.py
@date2024/6/11 10:02
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class ContainCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'contain':
return True
def compare(self, source_value, compare, target_value):
if isinstance(source_value, str):
return str(target_value) in source_value
return any([str(item) == str(target_value) for item in source_value])

View File

@ -1,21 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file equal_compare.py
@date2024/6/7 14:44
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class EqualCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'eq':
return True
def compare(self, source_value, compare, target_value):
return str(source_value) == str(target_value)

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 大于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class GECompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'ge':
return True
def compare(self, source_value, compare, target_value):
try:
return float(source_value) >= float(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 大于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class GTCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'gt':
return True
def compare(self, source_value, compare, target_value):
try:
return float(source_value) > float(target_value)
except Exception as e:
return False

View File

@ -1,21 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file is_not_null_compare.py
@date2024/6/28 10:45
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare import Compare
class IsNotNullCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'is_not_null':
return True
def compare(self, source_value, compare, target_value):
return source_value is not None and len(source_value) > 0

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file is_not_true.py
@date2025/4/7 13:44
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare import Compare
class IsNotTrueCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'is_not_true':
return True
def compare(self, source_value, compare, target_value):
try:
return source_value is False
except Exception as e:
return False

View File

@ -1,21 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file is_null_compare.py
@date2024/6/28 10:45
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare import Compare
class IsNullCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'is_null':
return True
def compare(self, source_value, compare, target_value):
return source_value is None or len(source_value) == 0

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file IsTrue.py
@date2025/4/7 13:38
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare import Compare
class IsTrueCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'is_true':
return True
def compare(self, source_value, compare, target_value):
try:
return source_value is True
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 小于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LECompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'le':
return True
def compare(self, source_value, compare, target_value):
try:
return float(source_value) <= float(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file equal_compare.py
@date2024/6/7 14:44
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LenEqualCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'len_eq':
return True
def compare(self, source_value, compare, target_value):
try:
return len(source_value) == int(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 大于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LenGECompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'len_ge':
return True
def compare(self, source_value, compare, target_value):
try:
return len(source_value) >= int(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 大于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LenGTCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'len_gt':
return True
def compare(self, source_value, compare, target_value):
try:
return len(source_value) > int(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 小于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LenLECompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'len_le':
return True
def compare(self, source_value, compare, target_value):
try:
return len(source_value) <= int(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 小于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LenLTCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'len_lt':
return True
def compare(self, source_value, compare, target_value):
try:
return len(source_value) < int(target_value)
except Exception as e:
return False

View File

@ -1,24 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file lt_compare.py
@date2024/6/11 9:52
@desc: 小于比较器
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class LTCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'lt':
return True
def compare(self, source_value, compare, target_value):
try:
return float(source_value) < float(target_value)
except Exception as e:
return False

View File

@ -1,23 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file contain_compare.py
@date2024/6/11 10:02
@desc:
"""
from typing import List
from application.flow.step_node.condition_node.compare.compare import Compare
class NotContainCompare(Compare):
def support(self, node_id, fields: List[str], source_value, compare, target_value):
if compare == 'not_contain':
return True
def compare(self, source_value, compare, target_value):
if isinstance(source_value, str):
return str(target_value) not in source_value
return not any([str(item) == str(target_value) for item in source_value])

View File

@ -1,39 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_condition_node.py
@date2024/6/7 9:54
@desc:
"""
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode
from common.util.field_message import ErrMessage
class ConditionSerializer(serializers.Serializer):
compare = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Comparator")))
value = serializers.CharField(required=True, error_messages=ErrMessage.char(_("value")))
field = serializers.ListField(required=True, error_messages=ErrMessage.char(_("Fields")))
class ConditionBranchSerializer(serializers.Serializer):
id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Branch id")))
type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Branch Type")))
condition = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Condition or|and")))
conditions = ConditionSerializer(many=True)
class ConditionNodeParamsSerializer(serializers.Serializer):
branch = ConditionBranchSerializer(many=True)
class IConditionNode(INode):
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ConditionNodeParamsSerializer
type = 'condition-node'

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py
@date2024/6/11 15:35
@desc:
"""
from .base_condition_node import BaseConditionNode

View File

@ -1,62 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_condition_node.py
@date2024/6/7 11:29
@desc:
"""
from typing import List
from application.flow.i_step_node import NodeResult
from application.flow.step_node.condition_node.compare import compare_handle_list
from application.flow.step_node.condition_node.i_condition_node import IConditionNode
class BaseConditionNode(IConditionNode):
def save_context(self, details, workflow_manage):
self.context['branch_id'] = details.get('branch_id')
self.context['branch_name'] = details.get('branch_name')
def execute(self, **kwargs) -> NodeResult:
branch_list = self.node_params_serializer.data['branch']
branch = self._execute(branch_list)
r = NodeResult({'branch_id': branch.get('id'), 'branch_name': branch.get('type')}, {})
return r
def _execute(self, branch_list: List):
for branch in branch_list:
if self.branch_assertion(branch):
return branch
def branch_assertion(self, branch):
condition_list = [self.assertion(row.get('field'), row.get('compare'), row.get('value')) for row in
branch.get('conditions')]
condition = branch.get('condition')
return all(condition_list) if condition == 'and' else any(condition_list)
def assertion(self, field_list: List[str], compare: str, value):
try:
value = self.workflow_manage.generate_prompt(value)
except Exception as e:
pass
field_value = None
try:
field_value = self.workflow_manage.get_reference_field(field_list[0], field_list[1:])
except Exception as e:
pass
for compare_handler in compare_handle_list:
if compare_handler.support(field_list[0], field_list[1:], field_value, compare, value):
return compare_handler.compare(field_value, compare, value)
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'branch_id': self.context.get('branch_id'),
'branch_name': self.context.get('branch_name'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message
}

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py
@date2024/6/11 17:50
@desc:
"""
from .impl import *

View File

@ -1,48 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file i_reply_node.py
@date2024/6/11 16:25
@desc:
"""
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.exception.app_exception import AppApiException
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ReplyNodeParamsSerializer(serializers.Serializer):
reply_type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Response Type")))
fields = serializers.ListField(required=False, error_messages=ErrMessage.list(_("Reference Field")))
content = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Direct answer content")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
if self.data.get('reply_type') == 'referencing':
if 'fields' not in self.data:
raise AppApiException(500, _("Reference field cannot be empty"))
if len(self.data.get('fields')) < 2:
raise AppApiException(500, _("Reference field error"))
else:
if 'content' not in self.data or self.data.get('content') is None:
raise AppApiException(500, _("Content cannot be empty"))
class IReplyNode(INode):
type = 'reply-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ReplyNodeParamsSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, reply_type, stream, fields=None, content=None, **kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py
@date2024/6/11 17:49
@desc:
"""
from .base_reply_node import *

View File

@ -1,43 +0,0 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file base_reply_node.py
@date2024/6/11 17:25
@desc:
"""
from typing import List
from application.flow.i_step_node import NodeResult
from application.flow.step_node.direct_reply_node.i_reply_node import IReplyNode
class BaseReplyNode(IReplyNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.answer_text = details.get('answer')
def execute(self, reply_type, stream, fields=None, content=None, **kwargs) -> NodeResult:
if reply_type == 'referencing':
result = self.get_reference_content(fields)
else:
result = self.generate_reply_content(content)
return NodeResult({'answer': result}, {})
def generate_reply_content(self, prompt):
return self.workflow_manage.generate_prompt(prompt)
def get_reference_content(self, fields: List[str]):
return str(self.workflow_manage.get_reference_field(
fields[0],
fields[1:]))
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'type': self.node.type,
'answer': self.context.get('answer'),
'status': self.status,
'err_message': self.err_message
}

View File

@ -1 +0,0 @@
from .impl import *

View File

@ -1,28 +0,0 @@
# coding=utf-8
from typing import Type
from django.utils.translation import gettext_lazy as _
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
class DocumentExtractNodeSerializer(serializers.Serializer):
document_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("document")))
class IDocumentExtractNode(INode):
type = 'document-extract-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return DocumentExtractNodeSerializer
def _run(self):
res = self.workflow_manage.get_reference_field(self.node_params_serializer.data.get('document_list')[0],
self.node_params_serializer.data.get('document_list')[1:])
return self.execute(document=res, **self.flow_params_serializer.data)
def execute(self, document, chat_id, **kwargs) -> NodeResult:
pass

View File

@ -1 +0,0 @@
from .base_document_extract_node import BaseDocumentExtractNode

View File

@ -1,94 +0,0 @@
# coding=utf-8
import io
import mimetypes
from django.core.files.uploadedfile import InMemoryUploadedFile
from django.db.models import QuerySet
from application.flow.i_step_node import NodeResult
from application.flow.step_node.document_extract_node.i_document_extract_node import IDocumentExtractNode
from dataset.models import File
from dataset.serializers.document_serializers import split_handles, parse_table_handle_list, FileBufferHandle
from dataset.serializers.file_serializers import FileSerializer
def bytes_to_uploaded_file(file_bytes, file_name="file.txt"):
content_type, _ = mimetypes.guess_type(file_name)
if content_type is None:
# 如果未能识别,设置为默认的二进制文件类型
content_type = "application/octet-stream"
# 创建一个内存中的字节流对象
file_stream = io.BytesIO(file_bytes)
# 获取文件大小
file_size = len(file_bytes)
# 创建 InMemoryUploadedFile 对象
uploaded_file = InMemoryUploadedFile(
file=file_stream,
field_name=None,
name=file_name,
content_type=content_type,
size=file_size,
charset=None,
)
return uploaded_file
splitter = '\n`-----------------------------------`\n'
class BaseDocumentExtractNode(IDocumentExtractNode):
def save_context(self, details, workflow_manage):
self.context['content'] = details.get('content')
def execute(self, document, chat_id, **kwargs):
get_buffer = FileBufferHandle().get_buffer
self.context['document_list'] = document
content = []
if document is None or not isinstance(document, list):
return NodeResult({'content': ''}, {})
application = self.workflow_manage.work_flow_post_handler.chat_info.application
# doc文件中的图片保存
def save_image(image_list):
for image in image_list:
meta = {
'debug': False if application.id else True,
'chat_id': chat_id,
'application_id': str(application.id) if application.id else None,
'file_id': str(image.id)
}
file = bytes_to_uploaded_file(image.image, image.image_name)
FileSerializer(data={'file': file, 'meta': meta}).upload()
for doc in document:
file = QuerySet(File).filter(id=doc['file_id']).first()
buffer = io.BytesIO(file.get_byte().tobytes())
buffer.name = doc['name'] # this is the important line
for split_handle in (parse_table_handle_list + split_handles):
if split_handle.support(buffer, get_buffer):
# 回到文件头
buffer.seek(0)
file_content = split_handle.get_content(buffer, save_image)
content.append('### ' + doc['name'] + '\n' + file_content)
break
return NodeResult({'content': splitter.join(content)}, {})
def get_details(self, index: int, **kwargs):
content = self.context.get('content', '').split(splitter)
# 不保存content全部内容因为content内容可能会很大
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'type': self.node.type,
'content': [file_content[:500] for file_content in content],
'status': self.status,
'err_message': self.err_message,
'document_list': self.context.get('document_list')
}

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py.py
@date2024/11/4 14:48
@desc:
"""
from .impl import *

View File

@ -1,35 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file i_form_node.py
@date2024/11/4 14:48
@desc:
"""
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class FormNodeParamsSerializer(serializers.Serializer):
form_field_list = serializers.ListField(required=True, error_messages=ErrMessage.list(_("Form Configuration")))
form_content_format = serializers.CharField(required=True, error_messages=ErrMessage.char(_('Form output content')))
form_data = serializers.DictField(required=False, allow_null=True, error_messages=ErrMessage.dict(_("Form Data")))
class IFormNode(INode):
type = 'form-node'
view_type = 'single_view'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return FormNodeParamsSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, form_field_list, form_content_format, form_data, **kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py.py
@date2024/11/4 14:49
@desc:
"""
from .base_form_node import BaseFormNode

View File

@ -1,106 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file base_form_node.py
@date2024/11/4 14:52
@desc:
"""
import json
import time
from typing import Dict, List
from langchain_core.prompts import PromptTemplate
from application.flow.common import Answer
from application.flow.i_step_node import NodeResult
from application.flow.step_node.form_node.i_form_node import IFormNode
def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'result' in step_variable:
result = step_variable['result']
yield result
node.answer_text = result
node.context['run_time'] = time.time() - node.context['start_time']
class BaseFormNode(IFormNode):
def save_context(self, details, workflow_manage):
form_data = details.get('form_data', None)
self.context['result'] = details.get('result')
self.context['form_content_format'] = details.get('form_content_format')
self.context['form_field_list'] = details.get('form_field_list')
self.context['run_time'] = details.get('run_time')
self.context['start_time'] = details.get('start_time')
self.context['form_data'] = form_data
self.context['is_submit'] = details.get('is_submit')
self.answer_text = details.get('result')
if form_data is not None:
for key in form_data:
self.context[key] = form_data[key]
def execute(self, form_field_list, form_content_format, form_data, **kwargs) -> NodeResult:
if form_data is not None:
self.context['is_submit'] = True
self.context['form_data'] = form_data
for key in form_data:
self.context[key] = form_data.get(key)
else:
self.context['is_submit'] = False
form_setting = {"form_field_list": form_field_list, "runtime_node_id": self.runtime_node_id,
"chat_record_id": self.flow_params_serializer.data.get("chat_record_id"),
"is_submit": self.context.get("is_submit", False)}
form = f'<form_rander>{json.dumps(form_setting, ensure_ascii=False)}</form_rander>'
context = self.workflow_manage.get_workflow_content()
form_content_format = self.workflow_manage.reset_prompt(form_content_format)
prompt_template = PromptTemplate.from_template(form_content_format, template_format='jinja2')
value = prompt_template.format(form=form, context=context)
return NodeResult(
{'result': value, 'form_field_list': form_field_list, 'form_content_format': form_content_format}, {},
_write_context=write_context)
def get_answer_list(self) -> List[Answer] | None:
form_content_format = self.context.get('form_content_format')
form_field_list = self.context.get('form_field_list')
form_setting = {"form_field_list": form_field_list, "runtime_node_id": self.runtime_node_id,
"chat_record_id": self.flow_params_serializer.data.get("chat_record_id"),
'form_data': self.context.get('form_data', {}),
"is_submit": self.context.get("is_submit", False)}
form = f'<form_rander>{json.dumps(form_setting,ensure_ascii=False)}</form_rander>'
context = self.workflow_manage.get_workflow_content()
form_content_format = self.workflow_manage.reset_prompt(form_content_format)
prompt_template = PromptTemplate.from_template(form_content_format, template_format='jinja2')
value = prompt_template.format(form=form, context=context)
return [Answer(value, self.view_type, self.runtime_node_id, self.workflow_params['chat_record_id'], None,
self.runtime_node_id, '')]
def get_details(self, index: int, **kwargs):
form_content_format = self.context.get('form_content_format')
form_field_list = self.context.get('form_field_list')
form_setting = {"form_field_list": form_field_list, "runtime_node_id": self.runtime_node_id,
"chat_record_id": self.flow_params_serializer.data.get("chat_record_id"),
'form_data': self.context.get('form_data', {}),
"is_submit": self.context.get("is_submit", False)}
form = f'<form_rander>{json.dumps(form_setting,ensure_ascii=False)}</form_rander>'
context = self.workflow_manage.get_workflow_content()
form_content_format = self.workflow_manage.reset_prompt(form_content_format)
prompt_template = PromptTemplate.from_template(form_content_format, template_format='jinja2')
value = prompt_template.format(form=form, context=context)
return {
'name': self.node.properties.get('stepName'),
"index": index,
"result": value,
"form_content_format": self.context.get('form_content_format'),
"form_field_list": self.context.get('form_field_list'),
'form_data': self.context.get('form_data'),
'start_time': self.context.get('start_time'),
'is_submit': self.context.get('is_submit'),
'run_time': self.context.get('run_time'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message
}

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py
@date2024/8/8 17:45
@desc:
"""
from .impl import *

View File

@ -1,48 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file i_function_lib_node.py
@date2024/8/8 16:21
@desc:
"""
from typing import Type
from django.db.models import QuerySet
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.field.common import ObjectField
from common.util.field_message import ErrMessage
from function_lib.models.function import FunctionLib
from django.utils.translation import gettext_lazy as _
class InputField(serializers.Serializer):
name = serializers.CharField(required=True, error_messages=ErrMessage.char(_('Variable Name')))
value = ObjectField(required=True, error_messages=ErrMessage.char(_("Variable Value")), model_type_list=[str, list])
class FunctionLibNodeParamsSerializer(serializers.Serializer):
function_lib_id = serializers.UUIDField(required=True, error_messages=ErrMessage.uuid(_('Library ID')))
input_field_list = InputField(required=True, many=True)
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
f_lib = QuerySet(FunctionLib).filter(id=self.data.get('function_lib_id')).first()
if f_lib is None:
raise Exception(_('The function has been deleted'))
class IFunctionLibNode(INode):
type = 'function-lib-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return FunctionLibNodeParamsSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, function_lib_id, input_field_list, **kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py
@date2024/8/8 17:48
@desc:
"""
from .base_function_lib_node import BaseFunctionLibNodeNode

View File

@ -1,149 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file base_function_lib_node.py
@date2024/8/8 17:49
@desc:
"""
import json
import time
from typing import Dict
from django.db.models import QuerySet
from django.utils.translation import gettext as _
from application.flow.i_step_node import NodeResult
from application.flow.step_node.function_lib_node.i_function_lib_node import IFunctionLibNode
from common.exception.app_exception import AppApiException
from common.util.function_code import FunctionExecutor
from common.util.rsa_util import rsa_long_decrypt
from function_lib.models.function import FunctionLib
from smartdoc.const import CONFIG
function_executor = FunctionExecutor(CONFIG.get('SANDBOX'))
def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'result' in step_variable:
result = str(step_variable['result']) + '\n'
yield result
node.answer_text = result
node.context['run_time'] = time.time() - node.context['start_time']
def get_field_value(debug_field_list, name, is_required):
result = [field for field in debug_field_list if field.get('name') == name]
if len(result) > 0:
return result[-1]['value']
if is_required:
raise AppApiException(500, _('Field: {name} No value set').format(name=name))
return None
def valid_reference_value(_type, value, name):
if _type == 'int':
instance_type = int | float
elif _type == 'float':
instance_type = float | int
elif _type == 'dict':
instance_type = dict
elif _type == 'array':
instance_type = list
elif _type == 'string':
instance_type = str
else:
raise Exception(_('Field: {name} Type: {_type} Value: {value} Unsupported types').format(name=name,
_type=_type))
if not isinstance(value, instance_type):
raise Exception(
_('Field: {name} Type: {_type} Value: {value} Type error').format(name=name, _type=_type,
value=value))
def convert_value(name: str, value, _type, is_required, source, node):
if not is_required and value is None:
return None
if not is_required and source == 'reference' and (value is None or len(value) == 0):
return None
if source == 'reference':
value = node.workflow_manage.get_reference_field(
value[0],
value[1:])
valid_reference_value(_type, value, name)
if _type == 'int':
return int(value)
if _type == 'float':
return float(value)
return value
try:
if _type == 'int':
return int(value)
if _type == 'float':
return float(value)
if _type == 'dict':
v = json.loads(value)
if isinstance(v, dict):
return v
raise Exception(_('type error'))
if _type == 'array':
v = json.loads(value)
if isinstance(v, list):
return v
raise Exception(_('type error'))
return value
except Exception as e:
raise Exception(
_('Field: {name} Type: {_type} Value: {value} Type error').format(name=name, _type=_type,
value=value))
def valid_function(function_lib, user_id):
if function_lib is None:
raise Exception(_('Function does not exist'))
if function_lib.permission_type == 'PRIVATE' and str(function_lib.user_id) != str(user_id):
raise Exception(_('No permission to use this function {name}').format(name=function_lib.name))
if not function_lib.is_active:
raise Exception(_('Function {name} is unavailable').format(name=function_lib.name))
class BaseFunctionLibNodeNode(IFunctionLibNode):
def save_context(self, details, workflow_manage):
self.context['result'] = details.get('result')
self.answer_text = str(details.get('result'))
def execute(self, function_lib_id, input_field_list, **kwargs) -> NodeResult:
function_lib = QuerySet(FunctionLib).filter(id=function_lib_id).first()
valid_function(function_lib, self.flow_params_serializer.data.get('user_id'))
params = {field.get('name'): convert_value(field.get('name'), field.get('value'), field.get('type'),
field.get('is_required'),
field.get('source'), self)
for field in
[{'value': get_field_value(input_field_list, field.get('name'), field.get('is_required'),
), **field}
for field in
function_lib.input_field_list]}
self.context['params'] = params
# 合并初始化参数
if function_lib.init_params is not None:
all_params = json.loads(rsa_long_decrypt(function_lib.init_params)) | params
else:
all_params = params
result = function_executor.exec_code(function_lib.code, all_params)
return NodeResult({'result': result}, {}, _write_context=write_context)
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
"result": self.context.get('result'),
"params": self.context.get('params'),
'run_time': self.context.get('run_time'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message
}

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py.py
@date2024/8/13 10:43
@desc:
"""
from .impl import *

View File

@ -1,63 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file i_function_lib_node.py
@date2024/8/8 16:21
@desc:
"""
import re
from typing import Type
from django.core import validators
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.exception.app_exception import AppApiException
from common.field.common import ObjectField
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
from rest_framework.utils.formatting import lazy_format
class InputField(serializers.Serializer):
name = serializers.CharField(required=True, error_messages=ErrMessage.char(_('Variable Name')))
is_required = serializers.BooleanField(required=True, error_messages=ErrMessage.boolean(_("Is this field required")))
type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("type")), validators=[
validators.RegexValidator(regex=re.compile("^string|int|dict|array|float$"),
message=_("The field only supports string|int|dict|array|float"), code=500)
])
source = serializers.CharField(required=True, error_messages=ErrMessage.char(_("source")), validators=[
validators.RegexValidator(regex=re.compile("^custom|reference$"),
message=_("The field only supports custom|reference"), code=500)
])
value = ObjectField(required=True, error_messages=ErrMessage.char(_("Variable Value")), model_type_list=[str, list])
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
is_required = self.data.get('is_required')
if is_required and self.data.get('value') is None:
message = lazy_format(_('{field}, this field is required.'), field=self.data.get("name"))
raise AppApiException(500, message)
class FunctionNodeParamsSerializer(serializers.Serializer):
input_field_list = InputField(required=True, many=True)
code = serializers.CharField(required=True, error_messages=ErrMessage.char(_("function")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
def is_valid(self, *, raise_exception=False):
super().is_valid(raise_exception=True)
class IFunctionNode(INode):
type = 'function-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return FunctionNodeParamsSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, input_field_list, code, **kwargs) -> NodeResult:
pass

View File

@ -1,9 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file __init__.py.py
@date2024/8/13 11:19
@desc:
"""
from .base_function_node import BaseFunctionNodeNode

View File

@ -1,107 +0,0 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file base_function_lib_node.py
@date2024/8/8 17:49
@desc:
"""
import json
import time
from typing import Dict
from application.flow.i_step_node import NodeResult
from application.flow.step_node.function_node.i_function_node import IFunctionNode
from common.exception.app_exception import AppApiException
from common.util.function_code import FunctionExecutor
from smartdoc.const import CONFIG
function_executor = FunctionExecutor(CONFIG.get('SANDBOX'))
def write_context(step_variable: Dict, global_variable: Dict, node, workflow):
if step_variable is not None:
for key in step_variable:
node.context[key] = step_variable[key]
if workflow.is_result(node, NodeResult(step_variable, global_variable)) and 'result' in step_variable:
result = str(step_variable['result']) + '\n'
yield result
node.answer_text = result
node.context['run_time'] = time.time() - node.context['start_time']
def valid_reference_value(_type, value, name):
if _type == 'int':
instance_type = int | float
elif _type == 'float':
instance_type = float | int
elif _type == 'dict':
instance_type = dict
elif _type == 'array':
instance_type = list
elif _type == 'string':
instance_type = str
else:
raise Exception(500, f'字段:{name}类型:{_type} 不支持的类型')
if not isinstance(value, instance_type):
raise Exception(f'字段:{name}类型:{_type}值:{value}类型错误')
def convert_value(name: str, value, _type, is_required, source, node):
if not is_required and value is None:
return None
if source == 'reference':
value = node.workflow_manage.get_reference_field(
value[0],
value[1:])
valid_reference_value(_type, value, name)
if _type == 'int':
return int(value)
if _type == 'float':
return float(value)
return value
try:
if _type == 'int':
return int(value)
if _type == 'float':
return float(value)
if _type == 'dict':
v = json.loads(value)
if isinstance(v, dict):
return v
raise Exception("类型错误")
if _type == 'array':
v = json.loads(value)
if isinstance(v, list):
return v
raise Exception("类型错误")
return value
except Exception as e:
raise Exception(f'字段:{name}类型:{_type}值:{value}类型错误')
class BaseFunctionNodeNode(IFunctionNode):
def save_context(self, details, workflow_manage):
self.context['result'] = details.get('result')
self.answer_text = str(details.get('result'))
def execute(self, input_field_list, code, **kwargs) -> NodeResult:
params = {field.get('name'): convert_value(field.get('name'), field.get('value'), field.get('type'),
field.get('is_required'), field.get('source'), self)
for field in input_field_list}
result = function_executor.exec_code(code, params)
self.context['params'] = params
return NodeResult({'result': result}, {}, _write_context=write_context)
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
"result": self.context.get('result'),
"params": self.context.get('params'),
'run_time': self.context.get('run_time'),
'type': self.node.type,
'status': self.status,
'err_message': self.err_message
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,45 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ImageGenerateNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word (positive)")))
negative_prompt = serializers.CharField(required=False, error_messages=ErrMessage.char(_("Prompt word (negative)")),
allow_null=True, allow_blank=True, )
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=False, default=0,
error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
dialogue_type = serializers.CharField(required=False, default='NODE',
error_messages=ErrMessage.char(_("Conversation storage type")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
model_params_setting = serializers.JSONField(required=False, default=dict,
error_messages=ErrMessage.json(_("Model parameter settings")))
class IImageGenerateNode(INode):
type = 'image-generate-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ImageGenerateNodeSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, model_id, prompt, negative_prompt, dialogue_number, dialogue_type, history_chat_record, chat_id,
model_params_setting,
chat_record_id,
**kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_image_generate_node import BaseImageGenerateNode

View File

@ -1,120 +0,0 @@
# coding=utf-8
from functools import reduce
from typing import List
import requests
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from application.flow.i_step_node import NodeResult
from application.flow.step_node.image_generate_step_node.i_image_generate_node import IImageGenerateNode
from common.util.common import bytes_to_uploaded_file
from dataset.serializers.file_serializers import FileSerializer
from setting.models_provider.tools import get_model_instance_by_model_user_id
class BaseImageGenerateNode(IImageGenerateNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['question'] = details.get('question')
self.answer_text = details.get('answer')
def execute(self, model_id, prompt, negative_prompt, dialogue_number, dialogue_type, history_chat_record, chat_id,
model_params_setting,
chat_record_id,
**kwargs) -> NodeResult:
print(model_params_setting)
application = self.workflow_manage.work_flow_post_handler.chat_info.application
tti_model = get_model_instance_by_model_user_id(model_id, self.flow_params_serializer.data.get('user_id'), **model_params_setting)
history_message = self.get_history_message(history_chat_record, dialogue_number)
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question
message_list = self.generate_message_list(question, history_message)
self.context['message_list'] = message_list
self.context['dialogue_type'] = dialogue_type
print(message_list)
image_urls = tti_model.generate_image(question, negative_prompt)
# 保存图片
file_urls = []
for image_url in image_urls:
file_name = 'generated_image.png'
file = bytes_to_uploaded_file(requests.get(image_url).content, file_name)
meta = {
'debug': False if application.id else True,
'chat_id': chat_id,
'application_id': str(application.id) if application.id else None,
}
file_url = FileSerializer(data={'file': file, 'meta': meta}).upload()
file_urls.append(file_url)
self.context['image_list'] = [{'file_id': path.split('/')[-1], 'url': path} for path in file_urls]
answer = ' '.join([f"![Image]({path})" for path in file_urls])
return NodeResult({'answer': answer, 'chat_model': tti_model, 'message_list': message_list,
'image': [{'file_id': path.split('/')[-1], 'url': path} for path in file_urls],
'history_message': history_message, 'question': question}, {})
def generate_history_ai_message(self, chat_record):
for val in chat_record.details.values():
if self.node.id == val['node_id'] and 'image_list' in val:
if val['dialogue_type'] == 'WORKFLOW':
return chat_record.get_ai_message()
image_list = val['image_list']
return AIMessage(content=[
*[{'type': 'image_url', 'image_url': {'url': f'{file_url}'}} for file_url in image_list]
])
return chat_record.get_ai_message()
def get_history_message(self, history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
[self.generate_history_human_message(history_chat_record[index]),
self.generate_history_ai_message(history_chat_record[index])]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
return history_message
def generate_history_human_message(self, chat_record):
for data in chat_record.details.values():
if self.node.id == data['node_id'] and 'image_list' in data:
image_list = data['image_list']
if len(image_list) == 0 or data['dialogue_type'] == 'WORKFLOW':
return HumanMessage(content=chat_record.problem_text)
return HumanMessage(content=data['question'])
return HumanMessage(content=chat_record.problem_text)
def generate_prompt_question(self, prompt):
return self.workflow_manage.generate_prompt(prompt)
def generate_message_list(self, question: str, history_message):
return [
*history_message,
question
]
@staticmethod
def reset_message_list(message_list: List[BaseMessage], answer_text):
result = [{'role': 'user' if isinstance(message, HumanMessage) else 'ai', 'content': message.content} for
message
in
message_list]
result.append({'role': 'ai', 'content': answer_text})
return result
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message,
'image_list': self.context.get('image_list'),
'dialogue_type': self.context.get('dialogue_type')
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,46 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class ImageUnderstandNodeSerializer(serializers.Serializer):
model_id = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Model id")))
system = serializers.CharField(required=False, allow_blank=True, allow_null=True,
error_messages=ErrMessage.char(_("Role Setting")))
prompt = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Prompt word")))
# 多轮对话数量
dialogue_number = serializers.IntegerField(required=True, error_messages=ErrMessage.integer(_("Number of multi-round conversations")))
dialogue_type = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Conversation storage type")))
is_result = serializers.BooleanField(required=False, error_messages=ErrMessage.boolean(_('Whether to return content')))
image_list = serializers.ListField(required=False, error_messages=ErrMessage.list(_("picture")))
model_params_setting = serializers.JSONField(required=False, default=dict,
error_messages=ErrMessage.json(_("Model parameter settings")))
class IImageUnderstandNode(INode):
type = 'image-understand-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return ImageUnderstandNodeSerializer
def _run(self):
res = self.workflow_manage.get_reference_field(self.node_params_serializer.data.get('image_list')[0],
self.node_params_serializer.data.get('image_list')[1:])
return self.execute(image=res, **self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, model_id, system, prompt, dialogue_number, dialogue_type, history_chat_record, stream, chat_id,
model_params_setting,
chat_record_id,
image,
**kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_image_understand_node import BaseImageUnderstandNode

View File

@ -1,223 +0,0 @@
# coding=utf-8
import base64
import os
import time
from functools import reduce
from typing import List, Dict
from django.db.models import QuerySet
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage, AIMessage
from application.flow.i_step_node import NodeResult, INode
from application.flow.step_node.image_understand_step_node.i_image_understand_node import IImageUnderstandNode
from dataset.models import File
from setting.models_provider.tools import get_model_instance_by_model_user_id
from imghdr import what
def _write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow, answer: str):
chat_model = node_variable.get('chat_model')
message_tokens = node_variable['usage_metadata']['output_tokens'] if 'usage_metadata' in node_variable else 0
answer_tokens = chat_model.get_num_tokens(answer)
node.context['message_tokens'] = message_tokens
node.context['answer_tokens'] = answer_tokens
node.context['answer'] = answer
node.context['history_message'] = node_variable['history_message']
node.context['question'] = node_variable['question']
node.context['run_time'] = time.time() - node.context['start_time']
if workflow.is_result(node, NodeResult(node_variable, workflow_variable)):
node.answer_text = answer
def write_context_stream(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据 (流式)
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = ''
for chunk in response:
answer += chunk.content
yield chunk.content
_write_context(node_variable, workflow_variable, node, workflow, answer)
def write_context(node_variable: Dict, workflow_variable: Dict, node: INode, workflow):
"""
写入上下文数据
@param node_variable: 节点数据
@param workflow_variable: 全局数据
@param node: 节点实例对象
@param workflow: 工作流管理器
"""
response = node_variable.get('result')
answer = response.content
_write_context(node_variable, workflow_variable, node, workflow, answer)
def file_id_to_base64(file_id: str):
file = QuerySet(File).filter(id=file_id).first()
file_bytes = file.get_byte()
base64_image = base64.b64encode(file_bytes).decode("utf-8")
return [base64_image, what(None, file_bytes.tobytes())]
class BaseImageUnderstandNode(IImageUnderstandNode):
def save_context(self, details, workflow_manage):
self.context['answer'] = details.get('answer')
self.context['question'] = details.get('question')
self.answer_text = details.get('answer')
def execute(self, model_id, system, prompt, dialogue_number, dialogue_type, history_chat_record, stream, chat_id,
model_params_setting,
chat_record_id,
image,
**kwargs) -> NodeResult:
# 处理不正确的参数
if image is None or not isinstance(image, list):
image = []
print(model_params_setting)
image_model = get_model_instance_by_model_user_id(model_id, self.flow_params_serializer.data.get('user_id'), **model_params_setting)
# 执行详情中的历史消息不需要图片内容
history_message = self.get_history_message_for_details(history_chat_record, dialogue_number)
self.context['history_message'] = history_message
question = self.generate_prompt_question(prompt)
self.context['question'] = question.content
# 生成消息列表, 真实的history_message
message_list = self.generate_message_list(image_model, system, prompt,
self.get_history_message(history_chat_record, dialogue_number), image)
self.context['message_list'] = message_list
self.context['image_list'] = image
self.context['dialogue_type'] = dialogue_type
if stream:
r = image_model.stream(message_list)
return NodeResult({'result': r, 'chat_model': image_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context_stream)
else:
r = image_model.invoke(message_list)
return NodeResult({'result': r, 'chat_model': image_model, 'message_list': message_list,
'history_message': history_message, 'question': question.content}, {},
_write_context=write_context)
def get_history_message_for_details(self, history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
[self.generate_history_human_message_for_details(history_chat_record[index]),
self.generate_history_ai_message(history_chat_record[index])]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
return history_message
def generate_history_ai_message(self, chat_record):
for val in chat_record.details.values():
if self.node.id == val['node_id'] and 'image_list' in val:
if val['dialogue_type'] == 'WORKFLOW':
return chat_record.get_ai_message()
return AIMessage(content=val['answer'])
return chat_record.get_ai_message()
def generate_history_human_message_for_details(self, chat_record):
for data in chat_record.details.values():
if self.node.id == data['node_id'] and 'image_list' in data:
image_list = data['image_list']
if len(image_list) == 0 or data['dialogue_type'] == 'WORKFLOW':
return HumanMessage(content=chat_record.problem_text)
file_id_list = [image.get('file_id') for image in image_list]
return HumanMessage(content=[
{'type': 'text', 'text': data['question']},
*[{'type': 'image_url', 'image_url': {'url': f'/api/file/{file_id}'}} for file_id in file_id_list]
])
return HumanMessage(content=chat_record.problem_text)
def get_history_message(self, history_chat_record, dialogue_number):
start_index = len(history_chat_record) - dialogue_number
history_message = reduce(lambda x, y: [*x, *y], [
[self.generate_history_human_message(history_chat_record[index]),
self.generate_history_ai_message(history_chat_record[index])]
for index in
range(start_index if start_index > 0 else 0, len(history_chat_record))], [])
return history_message
def generate_history_human_message(self, chat_record):
for data in chat_record.details.values():
if self.node.id == data['node_id'] and 'image_list' in data:
image_list = data['image_list']
if len(image_list) == 0 or data['dialogue_type'] == 'WORKFLOW':
return HumanMessage(content=chat_record.problem_text)
image_base64_list = [file_id_to_base64(image.get('file_id')) for image in image_list]
return HumanMessage(
content=[
{'type': 'text', 'text': data['question']},
*[{'type': 'image_url', 'image_url': {'url': f'data:image/{base64_image[1]};base64,{base64_image[0]}'}} for
base64_image in image_base64_list]
])
return HumanMessage(content=chat_record.problem_text)
def generate_prompt_question(self, prompt):
return HumanMessage(self.workflow_manage.generate_prompt(prompt))
def generate_message_list(self, image_model, system: str, prompt: str, history_message, image):
if image is not None and len(image) > 0:
# 处理多张图片
images = []
for img in image:
file_id = img['file_id']
file = QuerySet(File).filter(id=file_id).first()
image_bytes = file.get_byte()
base64_image = base64.b64encode(image_bytes).decode("utf-8")
image_format = what(None, image_bytes.tobytes())
images.append({'type': 'image_url', 'image_url': {'url': f'data:image/{image_format};base64,{base64_image}'}})
messages = [HumanMessage(
content=[
{'type': 'text', 'text': self.workflow_manage.generate_prompt(prompt)},
*images
])]
else:
messages = [HumanMessage(self.workflow_manage.generate_prompt(prompt))]
if system is not None and len(system) > 0:
return [
SystemMessage(self.workflow_manage.generate_prompt(system)),
*history_message,
*messages
]
else:
return [
*history_message,
*messages
]
@staticmethod
def reset_message_list(message_list: List[BaseMessage], answer_text):
result = [{'role': 'user' if isinstance(message, HumanMessage) else 'ai', 'content': message.content} for
message
in
message_list]
result.append({'role': 'ai', 'content': answer_text})
return result
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'system': self.node_params.get('system'),
'history_message': [{'content': message.content, 'role': message.type} for message in
(self.context.get('history_message') if self.context.get(
'history_message') is not None else [])],
'question': self.context.get('question'),
'answer': self.context.get('answer'),
'type': self.node.type,
'message_tokens': self.context.get('message_tokens'),
'answer_tokens': self.context.get('answer_tokens'),
'status': self.status,
'err_message': self.err_message,
'image_list': self.context.get('image_list'),
'dialogue_type': self.context.get('dialogue_type')
}

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .impl import *

View File

@ -1,35 +0,0 @@
# coding=utf-8
from typing import Type
from rest_framework import serializers
from application.flow.i_step_node import INode, NodeResult
from common.util.field_message import ErrMessage
from django.utils.translation import gettext_lazy as _
class McpNodeSerializer(serializers.Serializer):
mcp_servers = serializers.JSONField(required=True,
error_messages=ErrMessage.char(_("Mcp servers")))
mcp_server = serializers.CharField(required=True,
error_messages=ErrMessage.char(_("Mcp server")))
mcp_tool = serializers.CharField(required=True, error_messages=ErrMessage.char(_("Mcp tool")))
tool_params = serializers.DictField(required=True,
error_messages=ErrMessage.char(_("Tool parameters")))
class IMcpNode(INode):
type = 'mcp-node'
def get_node_params_serializer_class(self) -> Type[serializers.Serializer]:
return McpNodeSerializer
def _run(self):
return self.execute(**self.node_params_serializer.data, **self.flow_params_serializer.data)
def execute(self, mcp_servers, mcp_server, mcp_tool, tool_params, **kwargs) -> NodeResult:
pass

View File

@ -1,3 +0,0 @@
# coding=utf-8
from .base_mcp_node import BaseMcpNode

View File

@ -1,59 +0,0 @@
# coding=utf-8
import asyncio
import json
from typing import List
from langchain_mcp_adapters.client import MultiServerMCPClient
from application.flow.i_step_node import NodeResult
from application.flow.step_node.mcp_node.i_mcp_node import IMcpNode
class BaseMcpNode(IMcpNode):
def save_context(self, details, workflow_manage):
self.context['result'] = details.get('result')
self.context['tool_params'] = details.get('tool_params')
self.context['mcp_tool'] = details.get('mcp_tool')
self.answer_text = details.get('result')
def execute(self, mcp_servers, mcp_server, mcp_tool, tool_params, **kwargs) -> NodeResult:
servers = json.loads(mcp_servers)
params = json.loads(json.dumps(tool_params))
params = self.handle_variables(params)
async def call_tool(s, session, t, a):
async with MultiServerMCPClient(s) as client:
s = await client.sessions[session].call_tool(t, a)
return s
res = asyncio.run(call_tool(servers, mcp_server, mcp_tool, params))
return NodeResult({'result': [content.text for content in res.content], 'tool_params': params, 'mcp_tool': mcp_tool}, {})
def handle_variables(self, tool_params):
# 处理参数中的变量
for k, v in tool_params.items():
if type(v) == str:
tool_params[k] = self.workflow_manage.generate_prompt(tool_params[k])
if type(v) == dict:
self.handle_variables(v)
if (type(v) == list) and (type(v[0]) == str):
tool_params[k] = self.get_reference_content(v)
return tool_params
def get_reference_content(self, fields: List[str]):
return str(self.workflow_manage.get_reference_field(
fields[0],
fields[1:]))
def get_details(self, index: int, **kwargs):
return {
'name': self.node.properties.get('stepName'),
"index": index,
'run_time': self.context.get('run_time'),
'status': self.status,
'err_message': self.err_message,
'type': self.node.type,
'mcp_tool': self.context.get('mcp_tool'),
'tool_params': self.context.get('tool_params'),
'result': self.context.get('result'),
}

Some files were not shown because too many files have changed in this diff Show More