mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 01:33:05 +00:00
feat: 支持向量模型
This commit is contained in:
parent
f372095f51
commit
a9b8bdd365
|
|
@ -159,7 +159,7 @@ class ListenerManagement:
|
|||
@param embedding_model 向量模型
|
||||
:return: None
|
||||
"""
|
||||
if not try_lock('embedding' + document_id):
|
||||
if not try_lock('embedding' + str(document_id)):
|
||||
return
|
||||
max_kb.info(f"开始--->向量化文档:{document_id}")
|
||||
QuerySet(Document).filter(id=document_id).update(**{'status': Status.embedding})
|
||||
|
|
@ -186,7 +186,7 @@ class ListenerManagement:
|
|||
**{'status': status, 'update_time': datetime.datetime.now()})
|
||||
QuerySet(Paragraph).filter(document_id=document_id).update(**{'status': status})
|
||||
max_kb.info(f"结束--->向量化文档:{document_id}")
|
||||
un_lock('embedding' + document_id)
|
||||
un_lock('embedding' + str(document_id))
|
||||
|
||||
@staticmethod
|
||||
@embedding_poxy
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
@date:2024/7/12 15:02
|
||||
@desc:
|
||||
"""
|
||||
from typing import Dict
|
||||
from typing import Dict, List
|
||||
|
||||
from langchain_community.embeddings import OllamaEmbeddings
|
||||
|
||||
|
|
@ -16,7 +16,33 @@ from setting.models_provider.base_model_provider import MaxKBBaseModel
|
|||
class OllamaEmbedding(MaxKBBaseModel, OllamaEmbeddings):
|
||||
@staticmethod
|
||||
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
||||
return OllamaEmbeddings(
|
||||
return OllamaEmbedding(
|
||||
model=model_name,
|
||||
base_url=model_credential.get('api_base'),
|
||||
)
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed documents using an Ollama deployed embedding model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
instruction_pairs = [f"{text}" for text in texts]
|
||||
embeddings = self._embed(instruction_pairs)
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using a Ollama deployed embedding model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
instruction_pair = f"{text}"
|
||||
embedding = self._embed([instruction_pair])[0]
|
||||
return embedding
|
||||
|
|
|
|||
Loading…
Reference in New Issue