refactor: update QwenChatModel to use BaseChatOpenAI and remove unused methods

--bug=1052269 --user=刘瑞斌 【模型】对接千问模型,设置联网参数,maxkb对答不生效。通过python代码调用是可以的。 https://www.tapd.cn/57709429/s/1662132
This commit is contained in:
CaptainB 2025-03-04 17:47:52 +08:00 committed by 刘瑞斌
parent a75eb9fc86
commit 801911d765
2 changed files with 11 additions and 86 deletions

View File

@ -7,6 +7,9 @@ from setting.models_provider.impl.base_chat_open_ai import BaseChatOpenAI
class QwenVLChatModel(MaxKBBaseModel, BaseChatOpenAI):
@staticmethod
def is_cache_model():
return False
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):

View File

@ -6,20 +6,13 @@
@date2024/4/28 11:44
@desc:
"""
from typing import List, Dict, Optional, Iterator, Any, cast
from langchain_community.chat_models import ChatTongyi
from langchain_community.llms.tongyi import generate_with_last_element_mark
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import LanguageModelInput
from langchain_core.messages import BaseMessage
from langchain_core.outputs import ChatGenerationChunk, ChatGeneration
from langchain_core.runnables import RunnableConfig, ensure_config
from typing import Dict
from setting.models_provider.base_model_provider import MaxKBBaseModel
from setting.models_provider.impl.base_chat_open_ai import BaseChatOpenAI
class QwenChatModel(MaxKBBaseModel, ChatTongyi):
class QwenChatModel(MaxKBBaseModel, BaseChatOpenAI):
@staticmethod
def is_cache_model():
return False
@ -29,81 +22,10 @@ class QwenChatModel(MaxKBBaseModel, ChatTongyi):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
chat_tong_yi = QwenChatModel(
model_name=model_name,
dashscope_api_key=model_credential.get('api_key'),
model_kwargs=optional_params,
openai_api_key=model_credential.get('api_key'),
openai_api_base='https://dashscope.aliyuncs.com/compatible-mode/v1',
streaming=True,
stream_usage=True,
**optional_params,
)
return chat_tong_yi
usage_metadata: dict = {}
def get_last_generation_info(self) -> Optional[Dict[str, Any]]:
return self.usage_metadata
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
return self.usage_metadata.get('input_tokens', 0)
def get_num_tokens(self, text: str) -> int:
return self.usage_metadata.get('output_tokens', 0)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
for stream_resp, is_last_chunk in generate_with_last_element_mark(
self.stream_completion_with_retry(**params)
):
choice = stream_resp["output"]["choices"][0]
message = choice["message"]
if (
choice["finish_reason"] == "stop"
and message["content"] == ""
) or (choice["finish_reason"] == "length"):
token_usage = stream_resp["usage"]
self.usage_metadata = token_usage
if (
choice["finish_reason"] == "null"
and message["content"] == ""
and "tool_calls" not in message
):
continue
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(
stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
)
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
def invoke(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> BaseMessage:
config = ensure_config(config)
chat_result = cast(
ChatGeneration,
self.generate_prompt(
[self._convert_input(input)],
stop=stop,
callbacks=config.get("callbacks"),
tags=config.get("tags"),
metadata=config.get("metadata"),
run_name=config.get("run_name"),
run_id=config.pop("run_id", None),
**kwargs,
).generations[0][0],
).message
self.usage_metadata = chat_result.response_metadata['token_usage']
return chat_result