mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 01:33:05 +00:00
feat: Xinference Image Model
This commit is contained in:
parent
7de58de42a
commit
7bd791f8f5
|
|
@ -0,0 +1,65 @@
|
|||
# coding=utf-8
|
||||
import base64
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from common import forms
|
||||
from common.exception.app_exception import AppApiException
|
||||
from common.forms import BaseForm, TooltipLabel
|
||||
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
|
||||
|
||||
class XinferenceImageModelParams(BaseForm):
|
||||
temperature = forms.SliderField(TooltipLabel('温度', '较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定'),
|
||||
required=True, default_value=0.7,
|
||||
_min=0.1,
|
||||
_max=1.0,
|
||||
_step=0.01,
|
||||
precision=2)
|
||||
|
||||
max_tokens = forms.SliderField(
|
||||
TooltipLabel('输出最大Tokens', '指定模型可生成的最大token个数'),
|
||||
required=True, default_value=800,
|
||||
_min=1,
|
||||
_max=100000,
|
||||
_step=1,
|
||||
precision=0)
|
||||
|
||||
|
||||
|
||||
class XinferenceImageModelCredential(BaseForm, BaseModelCredential):
|
||||
api_base = forms.TextInputField('API 域名', required=True)
|
||||
api_key = forms.PasswordInputField('API Key', required=True)
|
||||
|
||||
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
|
||||
raise_exception=False):
|
||||
model_type_list = provider.get_model_type_list()
|
||||
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
|
||||
|
||||
for key in ['api_base', 'api_key']:
|
||||
if key not in model_credential:
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
|
||||
else:
|
||||
return False
|
||||
try:
|
||||
model = provider.get_model(model_type, model_name, model_credential)
|
||||
res = model.stream([HumanMessage(content=[{"type": "text", "text": "你好"}])])
|
||||
for chunk in res:
|
||||
print(chunk)
|
||||
except Exception as e:
|
||||
if isinstance(e, AppApiException):
|
||||
raise e
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
def encryption_dict(self, model: Dict[str, object]):
|
||||
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
|
||||
|
||||
def get_model_params_setting_form(self, model_name):
|
||||
return XinferenceImageModelParams()
|
||||
|
|
@ -0,0 +1,82 @@
|
|||
# coding=utf-8
|
||||
import base64
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from common import forms
|
||||
from common.exception.app_exception import AppApiException
|
||||
from common.forms import BaseForm, TooltipLabel
|
||||
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
|
||||
|
||||
|
||||
class XinferenceTTIModelParams(BaseForm):
|
||||
size = forms.SingleSelect(
|
||||
TooltipLabel('图片尺寸', '指定生成图片的尺寸, 如: 1024x1024'),
|
||||
required=True,
|
||||
default_value='1024x1024',
|
||||
option_list=[
|
||||
{'value': '1024x1024', 'label': '1024x1024'},
|
||||
{'value': '1024x1792', 'label': '1024x1792'},
|
||||
{'value': '1792x1024', 'label': '1792x1024'},
|
||||
],
|
||||
text_field='label',
|
||||
value_field='value'
|
||||
)
|
||||
|
||||
quality = forms.SingleSelect(
|
||||
TooltipLabel('图片质量', ''),
|
||||
required=True,
|
||||
default_value='standard',
|
||||
option_list=[
|
||||
{'value': 'standard', 'label': 'standard'},
|
||||
{'value': 'hd', 'label': 'hd'},
|
||||
],
|
||||
text_field='label',
|
||||
value_field='value'
|
||||
)
|
||||
|
||||
n = forms.SliderField(
|
||||
TooltipLabel('图片数量', '指定生成图片的数量'),
|
||||
required=True, default_value=1,
|
||||
_min=1,
|
||||
_max=10,
|
||||
_step=1,
|
||||
precision=0)
|
||||
|
||||
|
||||
class XinferenceTextToImageModelCredential(BaseForm, BaseModelCredential):
|
||||
api_base = forms.TextInputField('API 域名', required=True)
|
||||
api_key = forms.PasswordInputField('API Key', required=True)
|
||||
|
||||
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
|
||||
raise_exception=False):
|
||||
model_type_list = provider.get_model_type_list()
|
||||
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
|
||||
|
||||
for key in ['api_base', 'api_key']:
|
||||
if key not in model_credential:
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
|
||||
else:
|
||||
return False
|
||||
try:
|
||||
model = provider.get_model(model_type, model_name, model_credential)
|
||||
res = model.check_auth()
|
||||
print(res)
|
||||
except Exception as e:
|
||||
if isinstance(e, AppApiException):
|
||||
raise e
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
def encryption_dict(self, model: Dict[str, object]):
|
||||
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
|
||||
|
||||
def get_model_params_setting_form(self, model_name):
|
||||
return XinferenceTTIModelParams()
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
from typing import Dict
|
||||
|
||||
from langchain_openai.chat_models import ChatOpenAI
|
||||
|
||||
from common.config.tokenizer_manage_config import TokenizerManage
|
||||
from setting.models_provider.base_model_provider import MaxKBBaseModel
|
||||
|
||||
|
||||
def custom_get_token_ids(text: str):
|
||||
tokenizer = TokenizerManage.get_tokenizer()
|
||||
return tokenizer.encode(text)
|
||||
|
||||
|
||||
class XinferenceImage(MaxKBBaseModel, ChatOpenAI):
|
||||
|
||||
@staticmethod
|
||||
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
||||
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
|
||||
return XinferenceImage(
|
||||
model_name=model_name,
|
||||
openai_api_base=model_credential.get('api_base'),
|
||||
openai_api_key=model_credential.get('api_key'),
|
||||
# stream_options={"include_usage": True},
|
||||
streaming=True,
|
||||
**optional_params,
|
||||
)
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
import base64
|
||||
from typing import Dict
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from common.config.tokenizer_manage_config import TokenizerManage
|
||||
from common.util.common import bytes_to_uploaded_file
|
||||
from dataset.serializers.file_serializers import FileSerializer
|
||||
from setting.models_provider.base_model_provider import MaxKBBaseModel
|
||||
from setting.models_provider.impl.base_tti import BaseTextToImage
|
||||
|
||||
|
||||
def custom_get_token_ids(text: str):
|
||||
tokenizer = TokenizerManage.get_tokenizer()
|
||||
return tokenizer.encode(text)
|
||||
|
||||
|
||||
class XinferenceTextToImage(MaxKBBaseModel, BaseTextToImage):
|
||||
api_base: str
|
||||
api_key: str
|
||||
model: str
|
||||
params: dict
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.api_key = kwargs.get('api_key')
|
||||
self.api_base = kwargs.get('api_base')
|
||||
self.model = kwargs.get('model')
|
||||
self.params = kwargs.get('params')
|
||||
|
||||
@staticmethod
|
||||
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
||||
optional_params = {'params': {'size': '1024x1024', 'quality': 'standard', 'n': 1}}
|
||||
for key, value in model_kwargs.items():
|
||||
if key not in ['model_id', 'use_local', 'streaming']:
|
||||
optional_params['params'][key] = value
|
||||
return XinferenceTextToImage(
|
||||
model=model_name,
|
||||
api_base=model_credential.get('api_base'),
|
||||
api_key=model_credential.get('api_key'),
|
||||
**optional_params,
|
||||
)
|
||||
|
||||
def is_cache_model(self):
|
||||
return False
|
||||
|
||||
def check_auth(self):
|
||||
chat = OpenAI(api_key=self.api_key, base_url=self.api_base)
|
||||
response_list = chat.models.with_raw_response.list()
|
||||
|
||||
# self.generate_image('生成一个小猫图片')
|
||||
|
||||
def generate_image(self, prompt: str, negative_prompt: str = None):
|
||||
chat = OpenAI(api_key=self.api_key, base_url=self.api_base)
|
||||
res = chat.images.generate(model=self.model, prompt=prompt, response_format='b64_json', **self.params)
|
||||
file_urls = []
|
||||
# 临时文件
|
||||
for img in res.data:
|
||||
file = bytes_to_uploaded_file(base64.b64decode(img.b64_json), 'file_name.jpg')
|
||||
meta = {
|
||||
'debug': True,
|
||||
}
|
||||
file_url = FileSerializer(data={'file': file, 'meta': meta}).upload()
|
||||
file_urls.append(f'http://localhost:8080{file_url}')
|
||||
|
||||
return file_urls
|
||||
|
|
@ -9,20 +9,26 @@ from setting.models_provider.base_model_provider import IModelProvider, ModelPro
|
|||
ModelInfoManage
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.embedding import \
|
||||
XinferenceEmbeddingModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.image import XinferenceImageModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.llm import XinferenceLLMModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.reranker import XInferenceRerankerModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.stt import XInferenceSTTModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.tti import XinferenceTextToImageModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.tts import XInferenceTTSModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.model.embedding import XinferenceEmbedding
|
||||
from setting.models_provider.impl.xinference_model_provider.model.image import XinferenceImage
|
||||
from setting.models_provider.impl.xinference_model_provider.model.llm import XinferenceChatModel
|
||||
from setting.models_provider.impl.xinference_model_provider.model.reranker import XInferenceReranker
|
||||
from setting.models_provider.impl.xinference_model_provider.model.stt import XInferenceSpeechToText
|
||||
from setting.models_provider.impl.xinference_model_provider.model.tti import XinferenceTextToImage
|
||||
from setting.models_provider.impl.xinference_model_provider.model.tts import XInferenceTextToSpeech
|
||||
from smartdoc.conf import PROJECT_DIR
|
||||
|
||||
xinference_llm_model_credential = XinferenceLLMModelCredential()
|
||||
xinference_stt_model_credential = XInferenceSTTModelCredential()
|
||||
xinference_tts_model_credential = XInferenceTTSModelCredential()
|
||||
xinference_image_model_credential = XinferenceImageModelCredential()
|
||||
xinference_tti_model_credential = XinferenceTextToImageModelCredential()
|
||||
|
||||
model_info_list = [
|
||||
ModelInfo(
|
||||
|
|
@ -296,6 +302,159 @@ voice_model_info = [
|
|||
),
|
||||
]
|
||||
|
||||
image_model_info = [
|
||||
ModelInfo(
|
||||
'qwen-vl-chat',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'deepseek-vl-chat',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'yi-vl-chat',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'omnilmm',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'internvl-chat',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'cogvlm2',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'MiniCPM-Llama3-V-2_5',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'GLM-4V',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'MiniCPM-V-2.6',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'internvl2',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'qwen2-vl-instruct',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'llama-3.2-vision',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'llama-3.2-vision-instruct',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
ModelInfo(
|
||||
'glm-edge-v',
|
||||
'',
|
||||
ModelTypeConst.IMAGE,
|
||||
xinference_image_model_credential,
|
||||
XinferenceImage
|
||||
),
|
||||
]
|
||||
|
||||
tti_model_info = [
|
||||
ModelInfo(
|
||||
'sd-turbo',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
ModelInfo(
|
||||
'sdxl-turbo',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
ModelInfo(
|
||||
'stable-diffusion-v1.5',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
ModelInfo(
|
||||
'stable-diffusion-xl-base-1.0',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
ModelInfo(
|
||||
'sd3-medium',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
ModelInfo(
|
||||
'FLUX.1-schnell',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
ModelInfo(
|
||||
'FLUX.1-dev',
|
||||
'',
|
||||
ModelTypeConst.TTI,
|
||||
xinference_tti_model_credential,
|
||||
XinferenceTextToImage
|
||||
),
|
||||
]
|
||||
|
||||
xinference_embedding_model_credential = XinferenceEmbeddingModelCredential()
|
||||
|
||||
# 生成embedding_model_info列表
|
||||
|
|
@ -377,6 +536,8 @@ model_info_manage = (ModelInfoManage.builder()
|
|||
ModelTypeConst.EMBEDDING,
|
||||
xinference_embedding_model_credential, XinferenceEmbedding))
|
||||
.append_model_info_list(rerank_list)
|
||||
.append_model_info_list(image_model_info)
|
||||
.append_model_info_list(tti_model_info)
|
||||
.append_default_model_info(rerank_list[0])
|
||||
.build())
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue