feat: Xinference Image Model

This commit is contained in:
CaptainB 2024-12-12 18:38:35 +08:00 committed by 刘瑞斌
parent 7de58de42a
commit 7bd791f8f5
5 changed files with 400 additions and 0 deletions

View File

@ -0,0 +1,65 @@
# coding=utf-8
import base64
import os
from typing import Dict
from langchain_core.messages import HumanMessage
from common import forms
from common.exception.app_exception import AppApiException
from common.forms import BaseForm, TooltipLabel
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
class XinferenceImageModelParams(BaseForm):
temperature = forms.SliderField(TooltipLabel('温度', '较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定'),
required=True, default_value=0.7,
_min=0.1,
_max=1.0,
_step=0.01,
precision=2)
max_tokens = forms.SliderField(
TooltipLabel('输出最大Tokens', '指定模型可生成的最大token个数'),
required=True, default_value=800,
_min=1,
_max=100000,
_step=1,
precision=0)
class XinferenceImageModelCredential(BaseForm, BaseModelCredential):
api_base = forms.TextInputField('API 域名', required=True)
api_key = forms.PasswordInputField('API Key', required=True)
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
raise_exception=False):
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
for key in ['api_base', 'api_key']:
if key not in model_credential:
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
else:
return False
try:
model = provider.get_model(model_type, model_name, model_credential)
res = model.stream([HumanMessage(content=[{"type": "text", "text": "你好"}])])
for chunk in res:
print(chunk)
except Exception as e:
if isinstance(e, AppApiException):
raise e
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
else:
return False
return True
def encryption_dict(self, model: Dict[str, object]):
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
def get_model_params_setting_form(self, model_name):
return XinferenceImageModelParams()

View File

@ -0,0 +1,82 @@
# coding=utf-8
import base64
import os
from typing import Dict
from langchain_core.messages import HumanMessage
from common import forms
from common.exception.app_exception import AppApiException
from common.forms import BaseForm, TooltipLabel
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
class XinferenceTTIModelParams(BaseForm):
size = forms.SingleSelect(
TooltipLabel('图片尺寸', '指定生成图片的尺寸, 如: 1024x1024'),
required=True,
default_value='1024x1024',
option_list=[
{'value': '1024x1024', 'label': '1024x1024'},
{'value': '1024x1792', 'label': '1024x1792'},
{'value': '1792x1024', 'label': '1792x1024'},
],
text_field='label',
value_field='value'
)
quality = forms.SingleSelect(
TooltipLabel('图片质量', ''),
required=True,
default_value='standard',
option_list=[
{'value': 'standard', 'label': 'standard'},
{'value': 'hd', 'label': 'hd'},
],
text_field='label',
value_field='value'
)
n = forms.SliderField(
TooltipLabel('图片数量', '指定生成图片的数量'),
required=True, default_value=1,
_min=1,
_max=10,
_step=1,
precision=0)
class XinferenceTextToImageModelCredential(BaseForm, BaseModelCredential):
api_base = forms.TextInputField('API 域名', required=True)
api_key = forms.PasswordInputField('API Key', required=True)
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
raise_exception=False):
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
for key in ['api_base', 'api_key']:
if key not in model_credential:
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
else:
return False
try:
model = provider.get_model(model_type, model_name, model_credential)
res = model.check_auth()
print(res)
except Exception as e:
if isinstance(e, AppApiException):
raise e
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
else:
return False
return True
def encryption_dict(self, model: Dict[str, object]):
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
def get_model_params_setting_form(self, model_name):
return XinferenceTTIModelParams()

View File

@ -0,0 +1,26 @@
from typing import Dict
from langchain_openai.chat_models import ChatOpenAI
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class XinferenceImage(MaxKBBaseModel, ChatOpenAI):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
return XinferenceImage(
model_name=model_name,
openai_api_base=model_credential.get('api_base'),
openai_api_key=model_credential.get('api_key'),
# stream_options={"include_usage": True},
streaming=True,
**optional_params,
)

View File

@ -0,0 +1,66 @@
import base64
from typing import Dict
from openai import OpenAI
from common.config.tokenizer_manage_config import TokenizerManage
from common.util.common import bytes_to_uploaded_file
from dataset.serializers.file_serializers import FileSerializer
from setting.models_provider.base_model_provider import MaxKBBaseModel
from setting.models_provider.impl.base_tti import BaseTextToImage
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class XinferenceTextToImage(MaxKBBaseModel, BaseTextToImage):
api_base: str
api_key: str
model: str
params: dict
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.api_key = kwargs.get('api_key')
self.api_base = kwargs.get('api_base')
self.model = kwargs.get('model')
self.params = kwargs.get('params')
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = {'params': {'size': '1024x1024', 'quality': 'standard', 'n': 1}}
for key, value in model_kwargs.items():
if key not in ['model_id', 'use_local', 'streaming']:
optional_params['params'][key] = value
return XinferenceTextToImage(
model=model_name,
api_base=model_credential.get('api_base'),
api_key=model_credential.get('api_key'),
**optional_params,
)
def is_cache_model(self):
return False
def check_auth(self):
chat = OpenAI(api_key=self.api_key, base_url=self.api_base)
response_list = chat.models.with_raw_response.list()
# self.generate_image('生成一个小猫图片')
def generate_image(self, prompt: str, negative_prompt: str = None):
chat = OpenAI(api_key=self.api_key, base_url=self.api_base)
res = chat.images.generate(model=self.model, prompt=prompt, response_format='b64_json', **self.params)
file_urls = []
# 临时文件
for img in res.data:
file = bytes_to_uploaded_file(base64.b64decode(img.b64_json), 'file_name.jpg')
meta = {
'debug': True,
}
file_url = FileSerializer(data={'file': file, 'meta': meta}).upload()
file_urls.append(f'http://localhost:8080{file_url}')
return file_urls

View File

@ -9,20 +9,26 @@ from setting.models_provider.base_model_provider import IModelProvider, ModelPro
ModelInfoManage
from setting.models_provider.impl.xinference_model_provider.credential.embedding import \
XinferenceEmbeddingModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.image import XinferenceImageModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.llm import XinferenceLLMModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.reranker import XInferenceRerankerModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.stt import XInferenceSTTModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.tti import XinferenceTextToImageModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.tts import XInferenceTTSModelCredential
from setting.models_provider.impl.xinference_model_provider.model.embedding import XinferenceEmbedding
from setting.models_provider.impl.xinference_model_provider.model.image import XinferenceImage
from setting.models_provider.impl.xinference_model_provider.model.llm import XinferenceChatModel
from setting.models_provider.impl.xinference_model_provider.model.reranker import XInferenceReranker
from setting.models_provider.impl.xinference_model_provider.model.stt import XInferenceSpeechToText
from setting.models_provider.impl.xinference_model_provider.model.tti import XinferenceTextToImage
from setting.models_provider.impl.xinference_model_provider.model.tts import XInferenceTextToSpeech
from smartdoc.conf import PROJECT_DIR
xinference_llm_model_credential = XinferenceLLMModelCredential()
xinference_stt_model_credential = XInferenceSTTModelCredential()
xinference_tts_model_credential = XInferenceTTSModelCredential()
xinference_image_model_credential = XinferenceImageModelCredential()
xinference_tti_model_credential = XinferenceTextToImageModelCredential()
model_info_list = [
ModelInfo(
@ -296,6 +302,159 @@ voice_model_info = [
),
]
image_model_info = [
ModelInfo(
'qwen-vl-chat',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'deepseek-vl-chat',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'yi-vl-chat',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'omnilmm',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'internvl-chat',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'cogvlm2',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'MiniCPM-Llama3-V-2_5',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'GLM-4V',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'MiniCPM-V-2.6',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'internvl2',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'qwen2-vl-instruct',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'llama-3.2-vision',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'llama-3.2-vision-instruct',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
ModelInfo(
'glm-edge-v',
'',
ModelTypeConst.IMAGE,
xinference_image_model_credential,
XinferenceImage
),
]
tti_model_info = [
ModelInfo(
'sd-turbo',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
ModelInfo(
'sdxl-turbo',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
ModelInfo(
'stable-diffusion-v1.5',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
ModelInfo(
'stable-diffusion-xl-base-1.0',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
ModelInfo(
'sd3-medium',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
ModelInfo(
'FLUX.1-schnell',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
ModelInfo(
'FLUX.1-dev',
'',
ModelTypeConst.TTI,
xinference_tti_model_credential,
XinferenceTextToImage
),
]
xinference_embedding_model_credential = XinferenceEmbeddingModelCredential()
# 生成embedding_model_info列表
@ -377,6 +536,8 @@ model_info_manage = (ModelInfoManage.builder()
ModelTypeConst.EMBEDDING,
xinference_embedding_model_credential, XinferenceEmbedding))
.append_model_info_list(rerank_list)
.append_model_info_list(image_model_info)
.append_model_info_list(tti_model_info)
.append_default_model_info(rerank_list[0])
.build())