feat: Support Anthropic
Some checks failed
针对特定分支名自动创建 PR / 自动创建 PR (push) Has been cancelled
sync2gitee / repo-sync (push) Has been cancelled

This commit is contained in:
CaptainB 2024-12-19 13:42:52 +08:00
parent d1b1aaa5e0
commit 6ed0fe22ca
9 changed files with 287 additions and 0 deletions

View File

@ -10,6 +10,7 @@ from enum import Enum
from setting.models_provider.impl.aliyun_bai_lian_model_provider.aliyun_bai_lian_model_provider import \
AliyunBaiLianModelProvider
from setting.models_provider.impl.anthropic_model_provider.anthropic_model_provider import AnthropicModelProvider
from setting.models_provider.impl.aws_bedrock_model_provider.aws_bedrock_model_provider import BedrockModelProvider
from setting.models_provider.impl.azure_model_provider.azure_model_provider import AzureModelProvider
from setting.models_provider.impl.deepseek_model_provider.deepseek_model_provider import DeepSeekModelProvider
@ -47,3 +48,4 @@ class ModelProvideConstants(Enum):
model_xinference_provider = XinferenceModelProvider()
model_vllm_provider = VllmModelProvider()
aliyun_bai_lian_model_provider = AliyunBaiLianModelProvider()
model_anthropic_provider = AnthropicModelProvider()

View File

@ -0,0 +1,8 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file __init__.py.py
@date2024/3/28 16:25
@desc:
"""

View File

@ -0,0 +1,62 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file openai_model_provider.py
@date2024/3/28 16:26
@desc:
"""
import os
from common.util.file_util import get_file_content
from setting.models_provider.base_model_provider import IModelProvider, ModelProvideInfo, ModelInfo, \
ModelTypeConst, ModelInfoManage
from setting.models_provider.impl.anthropic_model_provider.credential.image import AnthropicImageModelCredential
from setting.models_provider.impl.anthropic_model_provider.credential.llm import AnthropicLLMModelCredential
from setting.models_provider.impl.anthropic_model_provider.model.image import AnthropicImage
from setting.models_provider.impl.anthropic_model_provider.model.llm import AnthropicChatModel
from smartdoc.conf import PROJECT_DIR
openai_llm_model_credential = AnthropicLLMModelCredential()
openai_image_model_credential = AnthropicImageModelCredential()
model_info_list = [
ModelInfo('claude-3-opus-20240229', '', ModelTypeConst.LLM,
openai_llm_model_credential, AnthropicChatModel
),
ModelInfo('claude-3-sonnet-20240229', '', ModelTypeConst.LLM, openai_llm_model_credential,
AnthropicChatModel),
ModelInfo('claude-3-haiku-20240307', '', ModelTypeConst.LLM, openai_llm_model_credential,
AnthropicChatModel),
ModelInfo('claude-3-5-sonnet-20240620', '', ModelTypeConst.LLM, openai_llm_model_credential,
AnthropicChatModel),
ModelInfo('claude-3-5-haiku-20241022', '', ModelTypeConst.LLM, openai_llm_model_credential,
AnthropicChatModel),
ModelInfo('claude-3-5-sonnet-20241022', '', ModelTypeConst.LLM, openai_llm_model_credential,
AnthropicChatModel),
]
image_model_info = [
ModelInfo('claude-3-5-sonnet-20241022', '', ModelTypeConst.IMAGE, openai_image_model_credential,
AnthropicImage),
]
model_info_manage = (
ModelInfoManage.builder()
.append_model_info_list(model_info_list)
.append_default_model_info(model_info_list[0])
.append_model_info_list(image_model_info)
.append_default_model_info(image_model_info[0])
.build()
)
class AnthropicModelProvider(IModelProvider):
def get_model_info_manage(self):
return model_info_manage
def get_model_provide_info(self):
return ModelProvideInfo(provider='model_anthropic_provider', name='Anthropic', icon=get_file_content(
os.path.join(PROJECT_DIR, "apps", "setting", 'models_provider', 'impl', 'anthropic_model_provider', 'icon',
'anthropic_icon_svg')))

View File

@ -0,0 +1,65 @@
# coding=utf-8
import base64
import os
from typing import Dict
from langchain_core.messages import HumanMessage
from common import forms
from common.exception.app_exception import AppApiException
from common.forms import BaseForm, TooltipLabel
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
class AnthropicImageModelParams(BaseForm):
temperature = forms.SliderField(TooltipLabel('温度', '较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定'),
required=True, default_value=0.7,
_min=0.1,
_max=1.0,
_step=0.01,
precision=2)
max_tokens = forms.SliderField(
TooltipLabel('输出最大Tokens', '指定模型可生成的最大token个数'),
required=True, default_value=800,
_min=1,
_max=100000,
_step=1,
precision=0)
class AnthropicImageModelCredential(BaseForm, BaseModelCredential):
api_base = forms.TextInputField('API 域名', required=True)
api_key = forms.PasswordInputField('API Key', required=True)
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], model_params, provider,
raise_exception=False):
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
for key in ['api_base', 'api_key']:
if key not in model_credential:
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
else:
return False
try:
model = provider.get_model(model_type, model_name, model_credential)
res = model.stream([HumanMessage(content=[{"type": "text", "text": "你好"}])])
for chunk in res:
print(chunk)
except Exception as e:
if isinstance(e, AppApiException):
raise e
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
else:
return False
return True
def encryption_dict(self, model: Dict[str, object]):
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
def get_model_params_setting_form(self, model_name):
return AnthropicImageModelParams()

View File

@ -0,0 +1,69 @@
# coding=utf-8
"""
@project: MaxKB
@Author
@file llm.py
@date2024/7/11 18:32
@desc:
"""
from typing import Dict
from langchain_core.messages import HumanMessage
from common import forms
from common.exception.app_exception import AppApiException
from common.forms import BaseForm, TooltipLabel
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
class AnthropicLLMModelParams(BaseForm):
temperature = forms.SliderField(TooltipLabel('温度', '较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定'),
required=True, default_value=0.7,
_min=0.1,
_max=1.0,
_step=0.01,
precision=2)
max_tokens = forms.SliderField(
TooltipLabel('输出最大Tokens', '指定模型可生成的最大token个数'),
required=True, default_value=800,
_min=1,
_max=100000,
_step=1,
precision=0)
class AnthropicLLMModelCredential(BaseForm, BaseModelCredential):
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], model_params, provider,
raise_exception=False):
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
for key in ['api_base', 'api_key']:
if key not in model_credential:
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
else:
return False
try:
model = provider.get_model(model_type, model_name, model_credential)
model.invoke([HumanMessage(content='你好')])
except Exception as e:
if isinstance(e, AppApiException):
raise e
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
else:
return False
return True
def encryption_dict(self, model: Dict[str, object]):
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
api_base = forms.TextInputField('API 域名', required=True)
api_key = forms.PasswordInputField('API Key', required=True)
def get_model_params_setting_form(self, model_name):
return AnthropicLLMModelParams()

View File

@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" shape-rendering="geometricPrecision" text-rendering="geometricPrecision" image-rendering="optimizeQuality" fill-rule="evenodd" clip-rule="evenodd" viewBox="0 0 512 512"><rect fill="#CC9B7A" width="512" height="512" rx="104.187" ry="105.042"/><path fill="#1F1F1E" fill-rule="nonzero" d="M318.663 149.787h-43.368l78.952 212.423 43.368.004-78.952-212.427zm-125.326 0l-78.952 212.427h44.255l15.932-44.608 82.846-.004 16.107 44.612h44.255l-79.126-212.427h-45.317zm-4.251 128.341l26.91-74.701 27.083 74.701h-53.993z"/></svg>

After

Width:  |  Height:  |  Size: 558 B

View File

@ -0,0 +1,26 @@
from typing import Dict
from langchain_anthropic import ChatAnthropic
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class AnthropicImage(MaxKBBaseModel, ChatAnthropic):
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
return AnthropicImage(
model=model_name,
anthropic_api_url=model_credential.get('api_base'),
anthropic_api_key=model_credential.get('api_key'),
# stream_options={"include_usage": True},
streaming=True,
**optional_params,
)

View File

@ -0,0 +1,53 @@
# coding=utf-8
"""
@project: maxkb
@Author
@file llm.py
@date2024/4/18 15:28
@desc:
"""
from typing import List, Dict
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import BaseMessage, get_buffer_string
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class AnthropicChatModel(MaxKBBaseModel, ChatAnthropic):
@staticmethod
def is_cache_model():
return False
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = MaxKBBaseModel.filter_optional_params(model_kwargs)
azure_chat_open_ai = AnthropicChatModel(
model=model_name,
anthropic_api_url=model_credential.get('api_base'),
anthropic_api_key=model_credential.get('api_key'),
**optional_params,
custom_get_token_ids=custom_get_token_ids
)
return azure_chat_open_ai
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
try:
return super().get_num_tokens_from_messages(messages)
except Exception as e:
tokenizer = TokenizerManage.get_tokenizer()
return sum([len(tokenizer.encode(get_buffer_string([m]))) for m in messages])
def get_num_tokens(self, text: str) -> int:
try:
return super().get_num_tokens(text)
except Exception as e:
tokenizer = TokenizerManage.get_tokenizer()
return len(tokenizer.encode(text))

View File

@ -41,6 +41,7 @@ httpx = "^0.27.0"
httpx-sse = "^0.4.0"
websockets = "^13.0"
langchain-google-genai = "^1.0.3"
langchain-anthropic= "^0.1.0"
openpyxl = "^3.1.2"
xlrd = "^2.0.1"
gunicorn = "^22.0.0"