mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 01:33:05 +00:00
feat: 支持xinference Rerank模型
This commit is contained in:
parent
d48b51c3e0
commit
504e900edf
|
|
@ -0,0 +1,47 @@
|
|||
# coding=utf-8
|
||||
"""
|
||||
@project: MaxKB
|
||||
@Author:虎
|
||||
@file: reranker.py
|
||||
@date:2024/9/10 9:46
|
||||
@desc:
|
||||
"""
|
||||
from typing import Dict
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from common import forms
|
||||
from common.exception.app_exception import AppApiException
|
||||
from common.forms import BaseForm
|
||||
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
|
||||
|
||||
|
||||
class XInferenceRerankerModelCredential(BaseForm, BaseModelCredential):
|
||||
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
|
||||
raise_exception=True):
|
||||
if not model_type == 'RERANKER':
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
|
||||
for key in ['server_url']:
|
||||
if key not in model_credential:
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
|
||||
else:
|
||||
return False
|
||||
try:
|
||||
model = provider.get_model(model_type, model_name, model_credential)
|
||||
model.compress_documents([Document(page_content='你好')], '你好')
|
||||
except Exception as e:
|
||||
if isinstance(e, AppApiException):
|
||||
raise e
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
def encryption_dict(self, model_info: Dict[str, object]):
|
||||
return model_info
|
||||
|
||||
server_url = forms.TextInputField('API 域名', required=True)
|
||||
|
||||
api_key = forms.PasswordInputField('API Key', required=False)
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
# coding=utf-8
|
||||
"""
|
||||
@project: MaxKB
|
||||
@Author:虎
|
||||
@file: reranker.py
|
||||
@date:2024/9/10 9:45
|
||||
@desc:
|
||||
"""
|
||||
from typing import Sequence, Optional, Any, Dict
|
||||
|
||||
from langchain_core.callbacks import Callbacks
|
||||
from langchain_core.documents import BaseDocumentCompressor, Document
|
||||
from xinference_client.client.restful.restful_client import RESTfulRerankModelHandle
|
||||
|
||||
from setting.models_provider.base_model_provider import MaxKBBaseModel
|
||||
|
||||
|
||||
class XInferenceReranker(MaxKBBaseModel, BaseDocumentCompressor):
|
||||
client: Any
|
||||
server_url: Optional[str]
|
||||
"""URL of the xinference server"""
|
||||
model_uid: Optional[str]
|
||||
"""UID of the launched model"""
|
||||
api_key: Optional[str]
|
||||
|
||||
@staticmethod
|
||||
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
||||
return XInferenceReranker(server_url=model_credential.get('server_url'), model_uid=model_name,
|
||||
api_key=model_credential.get('api_key'))
|
||||
|
||||
top_n: Optional[int] = 3
|
||||
|
||||
def __init__(
|
||||
self, server_url: Optional[str] = None, model_uid: Optional[str] = None, top_n=3,
|
||||
api_key: Optional[str] = None
|
||||
):
|
||||
try:
|
||||
from xinference.client import RESTfulClient
|
||||
except ImportError:
|
||||
try:
|
||||
from xinference_client import RESTfulClient
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Could not import RESTfulClient from xinference. Please install it"
|
||||
" with `pip install xinference` or `pip install xinference_client`."
|
||||
) from e
|
||||
|
||||
super().__init__()
|
||||
|
||||
if server_url is None:
|
||||
raise ValueError("Please provide server URL")
|
||||
|
||||
if model_uid is None:
|
||||
raise ValueError("Please provide the model UID")
|
||||
|
||||
self.server_url = server_url
|
||||
|
||||
self.model_uid = model_uid
|
||||
|
||||
self.api_key = api_key
|
||||
|
||||
self.client = RESTfulClient(server_url, api_key)
|
||||
|
||||
self.top_n = top_n
|
||||
|
||||
def compress_documents(self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None) -> \
|
||||
Sequence[Document]:
|
||||
if documents is None or len(documents) == 0:
|
||||
return []
|
||||
model: RESTfulRerankModelHandle = self.client.get_model(self.model_uid)
|
||||
res = model.rerank([document.page_content for document in documents], query, self.top_n, return_documents=True)
|
||||
return [Document(page_content=d.get('document', {}).get('text'),
|
||||
metadata={'relevance_score': d.get('relevance_score')}) for d in res.get('results', [])]
|
||||
|
|
@ -10,8 +10,10 @@ from setting.models_provider.base_model_provider import IModelProvider, ModelPro
|
|||
from setting.models_provider.impl.xinference_model_provider.credential.embedding import \
|
||||
XinferenceEmbeddingModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.llm import XinferenceLLMModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.credential.reranker import XInferenceRerankerModelCredential
|
||||
from setting.models_provider.impl.xinference_model_provider.model.embedding import XinferenceEmbedding
|
||||
from setting.models_provider.impl.xinference_model_provider.model.llm import XinferenceChatModel
|
||||
from setting.models_provider.impl.xinference_model_provider.model.reranker import XInferenceReranker
|
||||
from smartdoc.conf import PROJECT_DIR
|
||||
|
||||
xinference_llm_model_credential = XinferenceLLMModelCredential()
|
||||
|
|
@ -480,7 +482,9 @@ embedding_model_info = [
|
|||
ModelInfo('text2vec-large-chinese', 'Text2Vec 的中文大型版本嵌入模型。', ModelTypeConst.EMBEDDING,
|
||||
xinference_embedding_model_credential, XinferenceEmbedding),
|
||||
]
|
||||
|
||||
rerank_list = [ModelInfo('bce-reranker-base_v1',
|
||||
'发布新的重新排名器,建立在强大的 M3 和LLM (GEMMA 和 MiniCPM,实际上没那么大)骨干上,支持多语言处理和更大的输入,大幅提高 BEIR、C-MTEB/Retrieval 的排名性能、MIRACL、LlamaIndex 评估',
|
||||
ModelTypeConst.RERANKER, XInferenceRerankerModelCredential(), XInferenceReranker)]
|
||||
model_info_manage = (ModelInfoManage.builder().append_model_info_list(model_info_list).append_default_model_info(
|
||||
ModelInfo(
|
||||
'phi3',
|
||||
|
|
@ -492,6 +496,7 @@ model_info_manage = (ModelInfoManage.builder().append_model_info_list(model_info
|
|||
'',
|
||||
'',
|
||||
ModelTypeConst.EMBEDDING, xinference_embedding_model_credential, XinferenceEmbedding))
|
||||
.append_model_info_list(rerank_list).append_default_model_info(rerank_list[0])
|
||||
.build())
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue