perf: Optimize word segmentation retrieval (#2767)

This commit is contained in:
shaohuzhang1 2025-04-01 19:11:16 +08:00 committed by GitHub
parent 6fde8ec80f
commit 2991f0b640
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 9 additions and 34 deletions

View File

@ -12,9 +12,6 @@ from typing import List
import jieba
import jieba.posseg
from jieba import analyse
from common.util.split_model import group_by
jieba_word_list_cache = [chr(item) for item in range(38, 84)]
@ -80,37 +77,12 @@ def get_key_by_word_dict(key, word_dict):
def to_ts_vector(text: str):
# 获取不分词的数据
word_list = get_word_list(text)
# 获取关键词关系
word_dict = to_word_dict(word_list, text)
# 替换字符串
text = replace_word(word_dict, text)
# 分词
filter_word = jieba.analyse.extract_tags(text, topK=100)
result = jieba.lcut(text, HMM=True, use_paddle=True)
# 过滤标点符号
result = [item for item in result if filter_word.__contains__(item) and len(item) < 10]
result_ = [{'word': get_key_by_word_dict(result[index], word_dict), 'index': index} for index in
range(len(result))]
result_group = group_by(result_, lambda r: r['word'])
return " ".join(
[f"{key.lower()}:{','.join([str(item['index'] + 1) for item in result_group[key]][:20])}" for key in
result_group if
not remove_chars.__contains__(key) and len(key.strip()) >= 0])
result = jieba.lcut(text)
return " ".join(result)
def to_query(text: str):
# 获取不分词的数据
word_list = get_word_list(text)
# 获取关键词关系
word_dict = to_word_dict(word_list, text)
# 替换字符串
text = replace_word(word_dict, text)
extract_tags = analyse.extract_tags(text, topK=5, withWeight=True, allowPOS=('ns', 'n', 'vn', 'v', 'eng'))
result = " ".join([get_key_by_word_dict(word, word_dict) for word, score in extract_tags if
not remove_chars.__contains__(word)])
# 删除词库
for word in word_list:
jieba.del_word(word)
extract_tags = jieba.lcut(text)
result = " ".join(extract_tags)
return result

View File

@ -12,7 +12,9 @@ import uuid
from abc import ABC, abstractmethod
from typing import Dict, List
from django.db.models import QuerySet
import jieba
from django.contrib.postgres.search import SearchVector
from django.db.models import QuerySet, Value
from langchain_core.embeddings import Embeddings
from common.db.search import generate_sql_by_query_dict
@ -68,7 +70,8 @@ class PGVector(BaseVectorStore):
source_id=text_list[index].get('source_id'),
source_type=text_list[index].get('source_type'),
embedding=embeddings[index],
search_vector=to_ts_vector(text_list[index]['text'])) for index in
search_vector=SearchVector(Value(to_ts_vector(text_list[index]['text'])))) for
index in
range(0, len(texts))]
if not is_the_task_interrupted():
QuerySet(Embedding).bulk_create(embedding_list) if len(embedding_list) > 0 else None