feat: 增加xinference语音模型
Some checks are pending
sync2gitee / repo-sync (push) Waiting to run
Typos Check / Spell Check with Typos (push) Waiting to run

This commit is contained in:
CaptainB 2024-10-10 13:28:11 +08:00 committed by 刘瑞斌
parent 68a0098445
commit 1802b58a74
4 changed files with 180 additions and 0 deletions

View File

@ -0,0 +1,42 @@
# coding=utf-8
from typing import Dict
from common import forms
from common.exception.app_exception import AppApiException
from common.forms import BaseForm
from setting.models_provider.base_model_provider import BaseModelCredential, ValidCode
class XInferenceSTTModelCredential(BaseForm, BaseModelCredential):
api_base = forms.TextInputField('API 域名', required=True)
api_key = forms.PasswordInputField('API Key', required=True)
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
raise_exception=False):
model_type_list = provider.get_model_type_list()
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
for key in ['api_base', 'api_key']:
if key not in model_credential:
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
else:
return False
try:
model = provider.get_model(model_type, model_name, model_credential)
model.check_auth()
except Exception as e:
if isinstance(e, AppApiException):
raise e
if raise_exception:
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
else:
return False
return True
def encryption_dict(self, model: Dict[str, object]):
return {**model, 'api_key': super().encryption(model.get('api_key', ''))}
def get_model_params_setting_form(self, model_name):
pass

View File

@ -0,0 +1,59 @@
import asyncio
import io
from typing import Dict
from openai import OpenAI
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
from setting.models_provider.impl.base_stt import BaseSpeechToText
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class XInferenceSpeechToText(MaxKBBaseModel, BaseSpeechToText):
api_base: str
api_key: str
model: str
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.api_key = kwargs.get('api_key')
self.api_base = kwargs.get('api_base')
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = {}
if 'max_tokens' in model_kwargs and model_kwargs['max_tokens'] is not None:
optional_params['max_tokens'] = model_kwargs['max_tokens']
if 'temperature' in model_kwargs and model_kwargs['temperature'] is not None:
optional_params['temperature'] = model_kwargs['temperature']
return XInferenceSpeechToText(
model=model_name,
api_base=model_credential.get('api_base'),
api_key=model_credential.get('api_key'),
**optional_params,
)
def check_auth(self):
client = OpenAI(
base_url=self.api_base,
api_key=self.api_key
)
response_list = client.models.with_raw_response.list()
# print(response_list)
def speech_to_text(self, audio_file):
client = OpenAI(
base_url=self.api_base,
api_key=self.api_key
)
audio_data = audio_file.read()
buffer = io.BytesIO(audio_data)
buffer.name = "file.mp3" # this is the important line
res = client.audio.transcriptions.create(model=self.model, language="zh", file=buffer)
return res.text

View File

@ -0,0 +1,60 @@
from typing import Dict
from openai import OpenAI
from common.config.tokenizer_manage_config import TokenizerManage
from setting.models_provider.base_model_provider import MaxKBBaseModel
from setting.models_provider.impl.base_tts import BaseTextToSpeech
def custom_get_token_ids(text: str):
tokenizer = TokenizerManage.get_tokenizer()
return tokenizer.encode(text)
class XInferenceTextToSpeech(MaxKBBaseModel, BaseTextToSpeech):
api_base: str
api_key: str
model: str
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.api_key = kwargs.get('api_key')
self.api_base = kwargs.get('api_base')
self.model = kwargs.get('model')
@staticmethod
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
optional_params = {}
if 'max_tokens' in model_kwargs and model_kwargs['max_tokens'] is not None:
optional_params['max_tokens'] = model_kwargs['max_tokens']
if 'temperature' in model_kwargs and model_kwargs['temperature'] is not None:
optional_params['temperature'] = model_kwargs['temperature']
return XInferenceTextToSpeech(
model=model_name,
api_base=model_credential.get('api_base'),
api_key=model_credential.get('api_key'),
**optional_params,
)
def check_auth(self):
client = OpenAI(
base_url=self.api_base,
api_key=self.api_key
)
response_list = client.models.with_raw_response.list()
# print(response_list)
def text_to_speech(self, text):
client = OpenAI(
base_url=self.api_base,
api_key=self.api_key
)
# ['中文女', '中文男', '日语男', '粤语女', '英文女', '英文男', '韩语女']
with client.audio.speech.with_streaming_response.create(
model=self.model,
voice="中文女",
input=text,
) as response:
return response.read()

View File

@ -11,12 +11,17 @@ from setting.models_provider.impl.xinference_model_provider.credential.embedding
XinferenceEmbeddingModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.llm import XinferenceLLMModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.reranker import XInferenceRerankerModelCredential
from setting.models_provider.impl.xinference_model_provider.credential.stt import XInferenceSTTModelCredential
from setting.models_provider.impl.xinference_model_provider.model.embedding import XinferenceEmbedding
from setting.models_provider.impl.xinference_model_provider.model.llm import XinferenceChatModel
from setting.models_provider.impl.xinference_model_provider.model.reranker import XInferenceReranker
from setting.models_provider.impl.xinference_model_provider.model.stt import XInferenceSpeechToText
from setting.models_provider.impl.xinference_model_provider.model.tts import XInferenceTextToSpeech
from smartdoc.conf import PROJECT_DIR
xinference_llm_model_credential = XinferenceLLMModelCredential()
xinference_stt_model_credential = XInferenceSTTModelCredential()
model_info_list = [
ModelInfo(
'code-llama',
@ -270,6 +275,20 @@ model_info_list = [
xinference_llm_model_credential,
XinferenceChatModel
),
ModelInfo(
'CosyVoice-300M-SFT',
'CosyVoice-300M-SFT是一个小型的语音合成模型。',
ModelTypeConst.TTS,
xinference_stt_model_credential,
XInferenceTextToSpeech
),
ModelInfo(
'Belle-whisper-large-v3-zh',
'Belle Whisper Large V3 是一个中文大型语音识别模型。',
ModelTypeConst.STT,
xinference_stt_model_credential,
XInferenceSpeechToText
),
]
xinference_embedding_model_credential = XinferenceEmbeddingModelCredential()