mirror of
https://github.com/1Panel-dev/MaxKB.git
synced 2025-12-26 01:33:05 +00:00
feat: 支持阿里云百炼向量模型
This commit is contained in:
parent
8c4fb7968d
commit
01e775d579
|
|
@ -11,27 +11,25 @@ from typing import List
|
|||
|
||||
from common.chunk.i_chunk_handle import IChunkHandle
|
||||
|
||||
split_chunk_pattern = "!|。|\n|;|;"
|
||||
min_chunk_len = 20
|
||||
max_chunk_len = 256
|
||||
split_chunk_pattern = r'.{1,%d}[。| |\\.|!|;|;|!|\n]' % max_chunk_len
|
||||
max_chunk_pattern = r'.{1,%d}' % max_chunk_len
|
||||
|
||||
|
||||
class MarkChunkHandle(IChunkHandle):
|
||||
def handle(self, chunk_list: List[str]):
|
||||
result = []
|
||||
for chunk in chunk_list:
|
||||
base_chunk = re.split(split_chunk_pattern, chunk)
|
||||
base_chunk = [chunk.strip() for chunk in base_chunk if len(chunk.strip()) > 0]
|
||||
result_chunk = []
|
||||
for c in base_chunk:
|
||||
if len(result_chunk) == 0:
|
||||
result_chunk.append(c)
|
||||
else:
|
||||
if len(result_chunk[-1]) < min_chunk_len:
|
||||
result_chunk[-1] = result_chunk[-1] + c
|
||||
chunk_result = re.findall(split_chunk_pattern, chunk, flags=re.DOTALL)
|
||||
for c_r in chunk_result:
|
||||
result.append(c_r)
|
||||
other_chunk_list = re.split(split_chunk_pattern, chunk, flags=re.DOTALL)
|
||||
for other_chunk in other_chunk_list:
|
||||
if len(other_chunk) > 0:
|
||||
if len(other_chunk) < max_chunk_len:
|
||||
result.append(other_chunk)
|
||||
else:
|
||||
if len(c) < min_chunk_len:
|
||||
result_chunk[-1] = result_chunk[-1] + c
|
||||
else:
|
||||
result_chunk.append(c)
|
||||
result = [*result, *result_chunk]
|
||||
max_chunk_list = re.findall(max_chunk_pattern, other_chunk, flags=re.DOTALL)
|
||||
for m_c in max_chunk_list:
|
||||
result.append(m_c)
|
||||
return result
|
||||
|
|
|
|||
|
|
@ -11,10 +11,13 @@ import os
|
|||
from common.util.file_util import get_file_content
|
||||
from setting.models_provider.base_model_provider import ModelProvideInfo, ModelTypeConst, ModelInfo, IModelProvider, \
|
||||
ModelInfoManage
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.credential.embedding import \
|
||||
AliyunBaiLianEmbeddingCredential
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.credential.reranker import \
|
||||
AliyunBaiLianRerankerCredential
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.credential.stt import AliyunBaiLianSTTModelCredential
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.credential.tts import AliyunBaiLianTTSModelCredential
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.model.embedding import AliyunBaiLianEmbedding
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.model.reranker import AliyunBaiLianReranker
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.model.stt import AliyunBaiLianSpeechToText
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.model.tts import AliyunBaiLianTextToSpeech
|
||||
|
|
@ -23,6 +26,7 @@ from smartdoc.conf import PROJECT_DIR
|
|||
aliyun_bai_lian_model_credential = AliyunBaiLianRerankerCredential()
|
||||
aliyun_bai_lian_tts_model_credential = AliyunBaiLianTTSModelCredential()
|
||||
aliyun_bai_lian_stt_model_credential = AliyunBaiLianSTTModelCredential()
|
||||
aliyun_bai_lian_embedding_model_credential = AliyunBaiLianEmbeddingCredential()
|
||||
|
||||
model_info_list = [ModelInfo('gte-rerank',
|
||||
'阿里巴巴通义实验室开发的GTE-Rerank文本排序系列模型,开发者可以通过LlamaIndex框架进行集成高质量文本检索、排序。',
|
||||
|
|
@ -33,10 +37,15 @@ model_info_list = [ModelInfo('gte-rerank',
|
|||
ModelInfo('cosyvoice-v1',
|
||||
'CosyVoice基于新一代生成式语音大模型,能根据上下文预测情绪、语调、韵律等,具有更好的拟人效果',
|
||||
ModelTypeConst.TTS, aliyun_bai_lian_tts_model_credential, AliyunBaiLianTextToSpeech),
|
||||
ModelInfo('text-embedding-v1',
|
||||
'通用文本向量,是通义实验室基于LLM底座的多语言文本统一向量模型,面向全球多个主流语种,提供高水准的向量服务,帮助开发者将文本数据快速转换为高质量的向量数据。',
|
||||
ModelTypeConst.EMBEDDING, aliyun_bai_lian_embedding_model_credential,
|
||||
AliyunBaiLianEmbedding),
|
||||
]
|
||||
|
||||
model_info_manage = ModelInfoManage.builder().append_model_info_list(model_info_list).append_default_model_info(
|
||||
model_info_list[1]).append_default_model_info(model_info_list[2]).build()
|
||||
model_info_list[1]).append_default_model_info(model_info_list[2]).append_default_model_info(
|
||||
model_info_list[3]).build()
|
||||
|
||||
|
||||
class AliyunBaiLianModelProvider(IModelProvider):
|
||||
|
|
|
|||
|
|
@ -0,0 +1,46 @@
|
|||
# coding=utf-8
|
||||
"""
|
||||
@project: MaxKB
|
||||
@Author:虎
|
||||
@file: embedding.py
|
||||
@date:2024/10/16 17:01
|
||||
@desc:
|
||||
"""
|
||||
from typing import Dict
|
||||
|
||||
from common import forms
|
||||
from common.exception.app_exception import AppApiException
|
||||
from common.forms import BaseForm
|
||||
from setting.models_provider.base_model_provider import ValidCode, BaseModelCredential
|
||||
from setting.models_provider.impl.aliyun_bai_lian_model_provider.model.embedding import AliyunBaiLianEmbedding
|
||||
|
||||
|
||||
class AliyunBaiLianEmbeddingCredential(BaseForm, BaseModelCredential):
|
||||
|
||||
def is_valid(self, model_type: str, model_name, model_credential: Dict[str, object], provider,
|
||||
raise_exception=False):
|
||||
model_type_list = provider.get_model_type_list()
|
||||
if not any(list(filter(lambda mt: mt.get('value') == model_type, model_type_list))):
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{model_type} 模型类型不支持')
|
||||
for key in ['dashscope_api_key']:
|
||||
if key not in model_credential:
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'{key} 字段为必填字段')
|
||||
else:
|
||||
return False
|
||||
try:
|
||||
model: AliyunBaiLianEmbedding = provider.get_model(model_type, model_name, model_credential)
|
||||
model.embed_query('你好')
|
||||
except Exception as e:
|
||||
if isinstance(e, AppApiException):
|
||||
raise e
|
||||
if raise_exception:
|
||||
raise AppApiException(ValidCode.valid_error.value, f'校验失败,请检查参数是否正确: {str(e)}')
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
def encryption_dict(self, model: Dict[str, object]):
|
||||
return model
|
||||
|
||||
dashscope_api_key = forms.PasswordInputField('API Key', required=True)
|
||||
|
|
@ -0,0 +1,54 @@
|
|||
# coding=utf-8
|
||||
"""
|
||||
@project: MaxKB
|
||||
@Author:虎
|
||||
@file: embedding.py
|
||||
@date:2024/10/16 16:34
|
||||
@desc:
|
||||
"""
|
||||
from typing import Dict, List
|
||||
|
||||
from langchain_community.embeddings import DashScopeEmbeddings
|
||||
from langchain_community.embeddings.dashscope import embed_with_retry
|
||||
|
||||
from setting.models_provider.base_model_provider import MaxKBBaseModel
|
||||
|
||||
|
||||
class AliyunBaiLianEmbedding(MaxKBBaseModel, DashScopeEmbeddings):
|
||||
@staticmethod
|
||||
def new_instance(model_type, model_name, model_credential: Dict[str, object], **model_kwargs):
|
||||
return AliyunBaiLianEmbedding(
|
||||
model=model_name,
|
||||
dashscope_api_key=model_credential.get('dashscope_api_key')
|
||||
)
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to DashScope's embedding endpoint for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||||
specified by the class.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = embed_with_retry(
|
||||
self, input=texts, text_type="document", model=self.model
|
||||
)
|
||||
embedding_list = [item["embedding"] for item in embeddings]
|
||||
return embedding_list
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to DashScope's embedding endpoint for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
embedding = embed_with_retry(
|
||||
self, input=[text], text_type="document", model=self.model
|
||||
)[0]["embedding"]
|
||||
return embedding
|
||||
Loading…
Reference in New Issue