FastGPT/packages/service/core/ai/embedding/index.ts
Archer c51395b2c8
V4.12.0 features (#5435)
* add logs chart (#5352)

* charts

* chart data

* log chart

* delete

* rename api

* fix

* move api

* fix

* fix

* pro config

* fix

* feat: Repository interaction (#5356)

* feat: 1好像功能没问题了,明天再测

* feat: 2 解决了昨天遗留的bug,但全选按钮又bug了

* feat: 3 第三版,解决了全选功能bug

* feat: 4 第四版,下面改小细节

* feat: 5 我勒个痘

* feat: 6

* feat: 6 pr

* feat: 7

* feat: 8

* feat: 9

* feat: 10

* feat: 11

* feat: 12

* perf: checkbox ui

* refactor: tweak login loyout (#5357)

Co-authored-by: Archer <545436317@qq.com>

* login ui

* app chat log chart pro display (#5392)

* app chat log chart pro display

* add canopen props

* perf: pro tag tip

* perf: pro tag tip

* feat: openrouter provider (#5406)

* perf: login ui

* feat: openrouter provider

* provider

* perf: custom error throw

* perf: emb batch (#5407)

* perf: emb batch

* perf: vector retry

* doc

* doc (#5411)

* doc

* fix: team folder will add to workflow

* fix: generateToc shell

* Tool price (#5376)

* resolve conflicts for cherry-pick

* fix i18n

* Enhance system plugin template data structure and update ToolSelectModal to include CostTooltip component

* refactor: update systemKeyCost type to support array of objects in plugin and workflow types

* refactor: simplify systemKeyCost type across plugin and workflow types to a single number

* refactor: streamline systemKeyCost handling in plugin and workflow components

* fix

* fix

* perf: toolset price config;fix: workflow array selector ui (#5419)

* fix: workflow array selector ui

* update default model tip

* perf: toolset price config

* doc

* fix: test

* Refactor/chat (#5418)

* refactor: add homepage configuration; add home chat page; add side bar animated collapse and layout

* fix: fix lint rules

* chore: improve logics and code

* chore: more clearer logics

* chore: adjust api

---------

Co-authored-by: Archer <545436317@qq.com>

* perf: chat setting code

* del history

* logo image

* perf: home chat ui

* feat: enhance chat response handling with external links and user info (#5427)

* feat: enhance chat response handling with external links and user info

* fix

* cite code

* perf: toolset add in workflow

* fix: test

* fix: search paraentId

* Fix/chat (#5434)

* wip: rebase了upstream

* wip: adapt mobile UI

* fix: fix chat page logic and UI

* fix: fix UI and improve some logics

* fix: model selector missing logo; vision model to retrieve file

* perf: role selector

* fix: chat ui

* optimize export app chat log (#5436)

* doc

* chore: move components to proper directory; fix the api to get app list (#5437)

* chore: improve team app panel display form (#5438)

* feat: add home chat log tab

* chore: improve team app panel display form

* chore: improve log panel

* fix: spec

* doc

* fix: log permission

* fix: dataset schema required

* add loading status

* remove ui weight

* manage log

* fix: log detail per

* doc

* fix: log menu

* rename permission

* bg color

* fix: app log per

* fix: log key selector

* fix: log

* doc

---------

Co-authored-by: heheer <zhiyu44@qq.com>
Co-authored-by: colnii <1286949794@qq.com>
Co-authored-by: 伍闲犬 <76519998+xqvvu@users.noreply.github.com>
Co-authored-by: Ctrlz <143257420+ctrlz526@users.noreply.github.com>
Co-authored-by: 伍闲犬 <whoeverimf5@gmail.com>
Co-authored-by: heheer <heheer@sealos.io>
2025-08-12 22:22:18 +08:00

134 lines
3.9 KiB
TypeScript

import { type EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
import { getAIApi } from '../config';
import { countPromptTokens } from '../../../common/string/tiktoken/index';
import { EmbeddingTypeEnm } from '@fastgpt/global/core/ai/constants';
import { addLog } from '../../../common/system/log';
type GetVectorProps = {
model: EmbeddingModelItemType;
input: string[] | string;
type?: `${EmbeddingTypeEnm}`;
headers?: Record<string, string>;
};
// text to vector
export async function getVectorsByText({ model, input, type, headers }: GetVectorProps) {
if (!input) {
return Promise.reject({
code: 500,
message: 'input is empty'
});
}
const ai = getAIApi();
const formatInput = Array.isArray(input) ? input : [input];
// 20 size every request
const chunkSize = 20;
const chunks = [];
for (let i = 0; i < formatInput.length; i += chunkSize) {
chunks.push(formatInput.slice(i, i + chunkSize));
}
try {
// Process chunks sequentially
let totalTokens = 0;
const allVectors: number[][] = [];
for (const chunk of chunks) {
// input text to vector
const result = await ai.embeddings
.create(
{
...model.defaultConfig,
...(type === EmbeddingTypeEnm.db && model.dbConfig),
...(type === EmbeddingTypeEnm.query && model.queryConfig),
model: model.model,
input: chunk
},
model.requestUrl
? {
path: model.requestUrl,
headers: {
...(model.requestAuth ? { Authorization: `Bearer ${model.requestAuth}` } : {}),
...headers
}
}
: { headers }
)
.then(async (res) => {
if (!res.data) {
addLog.error('Embedding API is not responding', res);
return Promise.reject('Embedding API is not responding');
}
if (!res?.data?.[0]?.embedding) {
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
const [tokens, vectors] = await Promise.all([
(async () => {
if (res.usage) return res.usage.total_tokens;
const tokens = await Promise.all(chunk.map((item) => countPromptTokens(item)));
return tokens.reduce((sum, item) => sum + item, 0);
})(),
Promise.all(
res.data
.map((item) => unityDimensional(item.embedding))
.map((item) => {
if (model.normalization) return normalization(item);
return item;
})
)
]);
return {
tokens,
vectors
};
});
totalTokens += result.tokens;
allVectors.push(...result.vectors);
}
return {
tokens: totalTokens,
vectors: allVectors
};
} catch (error) {
addLog.error(`Embedding Error`, error);
return Promise.reject(error);
}
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) {
console.log(
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
);
return vector.slice(0, 1536);
}
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}
// normalization processing
function normalization(vector: number[]) {
if (vector.some((item) => item > 1)) {
// Calculate the Euclidean norm (L2 norm)
const norm = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0));
// Normalize the vector by dividing each component by the norm
return vector.map((val) => val / norm);
}
return vector;
}