FastGPT/packages/service/common/vectorDB/pg/index.ts
Archer 36d1ff3679
Some checks are pending
Document deploy / sync-images (push) Waiting to run
Document deploy / generate-timestamp (push) Blocked by required conditions
Document deploy / build-images (map[domain:https://fastgpt.cn suffix:cn]) (push) Blocked by required conditions
Document deploy / build-images (map[domain:https://fastgpt.io suffix:io]) (push) Blocked by required conditions
Document deploy / update-images (map[deployment:fastgpt-docs domain:https://fastgpt.cn kube_config:KUBE_CONFIG_CN suffix:cn]) (push) Blocked by required conditions
Document deploy / update-images (map[deployment:fastgpt-docs domain:https://fastgpt.io kube_config:KUBE_CONFIG_IO suffix:io]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / get-vars (push) Waiting to run
Build FastGPT images in Personal warehouse / build-fastgpt-images (map[arch:amd64 runs-on:ubuntu-24.04]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / build-fastgpt-images (map[arch:arm64 runs-on:ubuntu-24.04-arm]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / release-fastgpt-images (push) Blocked by required conditions
feat: custom domain (#6067)
* perf: faq

* index

* delete dataset

* delete dataset

* perf: delete dataset

* init

* fix: faq

* doc

* fix: share link auth (#6063)

* standard plan add custom domain config (#6061)

* standard plan add custom domain config

* bill detail modal

* perf: vector count api

* feat: custom domain & wecom bot SaaS integration (#6047)

* feat: custom Domain type define

* feat: custom domain

* feat: wecom custom domain

* chore: i18n

* chore: i18n; team auth

* feat: wecom multi-model message support

* chore: wecom edit modal

* chore(doc): custom domain && wecom bot

* fix: type

* fix: type

* fix: file detect

* feat: fe

* fix: img name

* fix: test

* compress img

* rename

* editor initial status

* fix: chat url

* perf: s3 upload by buffer

* img

* refresh

* fix: custom domain selector (#6069)

* empty tip

* perf: s3 init

* sort provider

* fix: extend

* perf: extract filename

---------

Co-authored-by: Roy <whoeverimf5@gmail.com>
Co-authored-by: heheer <heheer@sealos.io>
Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com>
2025-12-09 23:33:32 +08:00

240 lines
7.9 KiB
TypeScript

/* pg vector crud */
import { DatasetVectorTableName } from '../constants';
import { delay, retryFn } from '@fastgpt/global/common/system/utils';
import { PgClient, connectPg } from './controller';
import { type PgSearchRawType } from '@fastgpt/global/core/dataset/api';
import type {
DelDatasetVectorCtrlProps,
EmbeddingRecallCtrlProps,
EmbeddingRecallResponse,
InsertVectorControllerProps
} from '../controller.d';
import dayjs from 'dayjs';
import { addLog } from '../../system/log';
export class PgVectorCtrl {
constructor() {}
init = async () => {
try {
await connectPg();
await PgClient.query(`
CREATE EXTENSION IF NOT EXISTS vector;
CREATE TABLE IF NOT EXISTS ${DatasetVectorTableName} (
id BIGSERIAL PRIMARY KEY,
vector VECTOR(1536) NOT NULL,
team_id VARCHAR(50) NOT NULL,
dataset_id VARCHAR(50) NOT NULL,
collection_id VARCHAR(50) NOT NULL,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
`);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS vector_index ON ${DatasetVectorTableName} USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 128);`
);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS team_dataset_collection_index ON ${DatasetVectorTableName} USING btree(team_id, dataset_id, collection_id);`
);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS create_time_index ON ${DatasetVectorTableName} USING btree(createtime);`
);
// 10w rows
// await PgClient.query(`
// ALTER TABLE modeldata SET (
// autovacuum_vacuum_scale_factor = 0.1,
// autovacuum_analyze_scale_factor = 0.05,
// autovacuum_vacuum_threshold = 50,
// autovacuum_analyze_threshold = 50,
// autovacuum_vacuum_cost_delay = 20,
// autovacuum_vacuum_cost_limit = 200
// );`);
// 100w rows
// await PgClient.query(`
// ALTER TABLE modeldata SET (
// autovacuum_vacuum_scale_factor = 0.01,
// autovacuum_analyze_scale_factor = 0.02,
// autovacuum_vacuum_threshold = 1000,
// autovacuum_analyze_threshold = 1000,
// autovacuum_vacuum_cost_delay = 10,
// autovacuum_vacuum_cost_limit = 2000
// );`)
addLog.info('init pg successful');
} catch (error) {
addLog.error('init pg error', error);
}
};
insert = async (props: InsertVectorControllerProps): Promise<{ insertIds: string[] }> => {
const { teamId, datasetId, collectionId, vectors } = props;
const values = vectors.map((vector) => [
{ key: 'vector', value: `[${vector}]` },
{ key: 'team_id', value: String(teamId) },
{ key: 'dataset_id', value: String(datasetId) },
{ key: 'collection_id', value: String(collectionId) }
]);
const { rowCount, rows } = await PgClient.insert(DatasetVectorTableName, {
values
});
if (rowCount === 0) {
return Promise.reject('insertDatasetData: no insert');
}
return {
insertIds: rows.map((row) => row.id)
};
};
delete = async (props: DelDatasetVectorCtrlProps): Promise<any> => {
const { teamId } = props;
const teamIdWhere = `team_id='${String(teamId)}' AND`;
const where = await (() => {
if ('id' in props && props.id) return `${teamIdWhere} id=${props.id}`;
if ('datasetIds' in props && props.datasetIds) {
const datasetIdWhere = `dataset_id IN (${props.datasetIds
.map((id) => `'${String(id)}'`)
.join(',')})`;
if ('collectionIds' in props && props.collectionIds) {
return `${teamIdWhere} ${datasetIdWhere} AND collection_id IN (${props.collectionIds
.map((id) => `'${String(id)}'`)
.join(',')})`;
}
return `${teamIdWhere} ${datasetIdWhere}`;
}
if ('idList' in props && Array.isArray(props.idList)) {
if (props.idList.length === 0) return;
return `${teamIdWhere} id IN (${props.idList.map((id) => String(id)).join(',')})`;
}
return Promise.reject('deleteDatasetData: no where');
})();
if (!where) return;
await PgClient.delete(DatasetVectorTableName, {
where: [where]
});
};
embRecall = async (props: EmbeddingRecallCtrlProps): Promise<EmbeddingRecallResponse> => {
const { teamId, datasetIds, vector, limit, forbidCollectionIdList, filterCollectionIdList } =
props;
// Get forbid collection
const formatForbidCollectionIdList = (() => {
if (!filterCollectionIdList) return forbidCollectionIdList;
const list = forbidCollectionIdList
.map((id) => String(id))
.filter((id) => !filterCollectionIdList.includes(id));
return list;
})();
const forbidCollectionSql =
formatForbidCollectionIdList.length > 0
? `AND collection_id NOT IN (${formatForbidCollectionIdList.map((id) => `'${id}'`).join(',')})`
: '';
// Filter by collectionId
const formatFilterCollectionId = (() => {
if (!filterCollectionIdList) return;
return filterCollectionIdList
.map((id) => String(id))
.filter((id) => !forbidCollectionIdList.includes(id));
})();
const filterCollectionIdSql = formatFilterCollectionId
? `AND collection_id IN (${formatFilterCollectionId.map((id) => `'${id}'`).join(',')})`
: '';
// Empty data
if (formatFilterCollectionId && formatFilterCollectionId.length === 0) {
return { results: [] };
}
const results: any = await PgClient.query(
`BEGIN;
SET LOCAL hnsw.ef_search = ${global.systemEnv?.hnswEfSearch || 100};
SET LOCAL hnsw.max_scan_tuples = ${global.systemEnv?.hnswMaxScanTuples || 100000};
SET LOCAL hnsw.iterative_scan = relaxed_order;
WITH relaxed_results AS MATERIALIZED (
select id, collection_id, vector <#> '[${vector}]' AS score
from ${DatasetVectorTableName}
where dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
${filterCollectionIdSql}
${forbidCollectionSql}
order by score limit ${limit}
) SELECT id, collection_id, score FROM relaxed_results ORDER BY score;
COMMIT;`
);
const rows = results?.[results.length - 2]?.rows as PgSearchRawType[];
if (!Array.isArray(rows)) {
return {
results: []
};
}
return {
results: rows.map((item) => ({
id: String(item.id),
collectionId: item.collection_id,
score: item.score * -1
}))
};
};
getVectorDataByTime = async (start: Date, end: Date) => {
const { rows } = await PgClient.query<{
id: string;
team_id: string;
dataset_id: string;
}>(`SELECT id, team_id, dataset_id
FROM ${DatasetVectorTableName}
WHERE createtime BETWEEN '${dayjs(start).format('YYYY-MM-DD HH:mm:ss')}' AND '${dayjs(
end
).format('YYYY-MM-DD HH:mm:ss')}';
`);
return rows.map((item) => ({
id: String(item.id),
teamId: item.team_id,
datasetId: item.dataset_id
}));
};
getVectorCount = async (props: {
teamId?: string;
datasetId?: string;
collectionId?: string;
}) => {
const { teamId, datasetId, collectionId } = props;
// Build where conditions dynamically
const whereConditions: any[] = [];
if (teamId) {
whereConditions.push(['team_id', String(teamId)]);
}
if (datasetId) {
if (whereConditions.length > 0) whereConditions.push('and');
whereConditions.push(['dataset_id', String(datasetId)]);
}
if (collectionId) {
if (whereConditions.length > 0) whereConditions.push('and');
whereConditions.push(['collection_id', String(collectionId)]);
}
// If no conditions provided, count all
const total = await PgClient.count(DatasetVectorTableName, {
where: whereConditions.length > 0 ? whereConditions : undefined
});
return total;
};
}