mirror of
https://github.com/labring/FastGPT.git
synced 2025-12-25 20:02:47 +00:00
Some checks are pending
Document deploy / sync-images (push) Waiting to run
Document deploy / generate-timestamp (push) Blocked by required conditions
Document deploy / build-images (map[domain:https://fastgpt.cn suffix:cn]) (push) Blocked by required conditions
Document deploy / build-images (map[domain:https://fastgpt.io suffix:io]) (push) Blocked by required conditions
Document deploy / update-images (map[deployment:fastgpt-docs domain:https://fastgpt.cn kube_config:KUBE_CONFIG_CN suffix:cn]) (push) Blocked by required conditions
Document deploy / update-images (map[deployment:fastgpt-docs domain:https://fastgpt.io kube_config:KUBE_CONFIG_IO suffix:io]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / get-vars (push) Waiting to run
Build FastGPT images in Personal warehouse / build-fastgpt-images (map[arch:amd64 runs-on:ubuntu-24.04]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / build-fastgpt-images (map[arch:arm64 runs-on:ubuntu-24.04-arm]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / release-fastgpt-images (push) Blocked by required conditions
* feat: add query optimize and bill (#6021) * add query optimize and bill * perf: query extension * fix: embe model * remove log * remove log * fix: test --------- Co-authored-by: xxyyh <2289112474@qq> Co-authored-by: archer <545436317@qq.com> * feat: notice (#6013) * feat: record user's language * feat: notice points/dataset indexes; support count limit; update docker-compose.yml * fix: ts error * feat: send auth code i18n * chore: dataset notice limit * chore: adjust * fix: ts * fix: countLimit race condition; i18n en-prefix locale fallback to en --------- Co-authored-by: archer <545436317@qq.com> * perf: comment * perf: send inform code * fix: type error (#6029) * feat: add ip region for chat logs (#6010) * feat: add ip region for chat logs * refactor: use Geolite2.mmdb * fix: export chat logs * fix: return location directly * test: add unit test * perf: log show ip data * adjust commercial plans (#6008) * plan frontend * plan limit * coupon * discount coupon * fix * type * fix audit * type * plan name * legacy plan * track * feat: add discount coupon * fix * fix discount coupon * openapi * type * type * env * api type * fix * fix: simple agent plugin input & agent dashboard card (#6034) * refactor: remove gridfs (#6031) * fix: replace gridfs multer operations with s3 compatible ops * wip: s3 features * refactor: remove gridfs * fix * perf: mock test * doc * doc * doc * fix: test * fix: s3 * fix: mock s3 * remove invalid config * fix: init query extension * initv4144 (#6037) * chore: initv4144 * fix * version * fix: new plans (#6039) * fix: new plans * qr modal tip * fix: buffer raw text filename (#6040) * fix: initv4144 (#6041) * fix: pay refresh (#6042) * fix: migration shell * rename collection * clear timerlock * clear timerlock * perf: faq * perf: bill schema * fix: openapi * doc * fix: share var render * feat: delete dataset queue * plan usage display (#6043) * plan usage display * text * fix * fix: ts * perf: remove invalid code * perf: init shell * doc * perf: rename field * perf: avatar presign * init * custom plan text (#6045) * fix plans * fix * fixed * computed --------- Co-authored-by: archer <545436317@qq.com> * init shell * plan text & price page back button (#6046) * init * index * delete dataset * delete dataset * perf: delete dataset * init --------- Co-authored-by: YeYuheng <57035043+YYH211@users.noreply.github.com> Co-authored-by: xxyyh <2289112474@qq> Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com> Co-authored-by: Roy <whoeverimf5@gmail.com> Co-authored-by: heheer <heheer@sealos.io>
155 lines
4.2 KiB
TypeScript
155 lines
4.2 KiB
TypeScript
/*
|
|
根据文本的余弦相似度,获取最大边际收益的检索词。
|
|
Reference: https://github.com/jina-ai/submodular-optimization
|
|
*/
|
|
|
|
import { getVectorsByText } from '../embedding';
|
|
import { getEmbeddingModel } from '../model';
|
|
|
|
class PriorityQueue<T> {
|
|
private heap: Array<{ item: T; priority: number }> = [];
|
|
|
|
enqueue(item: T, priority: number): void {
|
|
this.heap.push({ item, priority });
|
|
this.heap.sort((a, b) => b.priority - a.priority);
|
|
}
|
|
|
|
dequeue(): T | undefined {
|
|
return this.heap.shift()?.item;
|
|
}
|
|
|
|
isEmpty(): boolean {
|
|
return this.heap.length === 0;
|
|
}
|
|
|
|
size(): number {
|
|
return this.heap.length;
|
|
}
|
|
}
|
|
export const useTextCosine = ({ embeddingModel }: { embeddingModel: string }) => {
|
|
const vectorModel = getEmbeddingModel(embeddingModel);
|
|
// Calculate marginal gain
|
|
const computeMarginalGain = (
|
|
candidateEmbedding: number[],
|
|
selectedEmbeddings: number[][],
|
|
originalEmbedding: number[],
|
|
alpha: number = 0.3
|
|
): number => {
|
|
// Calculate cosine similarity
|
|
const cosineSimilarity = (a: number[], b: number[]): number => {
|
|
if (a.length !== b.length) {
|
|
throw new Error('Vectors must have the same length');
|
|
}
|
|
|
|
let dotProduct = 0;
|
|
let normA = 0;
|
|
let normB = 0;
|
|
|
|
for (let i = 0; i < a.length; i++) {
|
|
dotProduct += a[i] * b[i];
|
|
normA += a[i] * a[i];
|
|
normB += b[i] * b[i];
|
|
}
|
|
|
|
if (normA === 0 || normB === 0) return 0;
|
|
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
|
|
};
|
|
|
|
if (selectedEmbeddings.length === 0) {
|
|
return alpha * cosineSimilarity(originalEmbedding, candidateEmbedding);
|
|
}
|
|
|
|
let maxSimilarity = 0;
|
|
for (const selectedEmbedding of selectedEmbeddings) {
|
|
const similarity = cosineSimilarity(candidateEmbedding, selectedEmbedding);
|
|
maxSimilarity = Math.max(maxSimilarity, similarity);
|
|
}
|
|
|
|
const relevance = alpha * cosineSimilarity(originalEmbedding, candidateEmbedding);
|
|
const diversity = 1 - maxSimilarity;
|
|
|
|
return relevance + diversity;
|
|
};
|
|
|
|
// Lazy greedy query selection algorithm
|
|
const lazyGreedyQuerySelection = async ({
|
|
originalText,
|
|
candidates,
|
|
k,
|
|
alpha = 0.3
|
|
}: {
|
|
originalText: string;
|
|
candidates: string[]; // 候选文本
|
|
k: number;
|
|
alpha?: number;
|
|
}) => {
|
|
const { tokens: embeddingTokens, vectors: embeddingVectors } = await getVectorsByText({
|
|
model: vectorModel,
|
|
input: [originalText, ...candidates],
|
|
type: 'query'
|
|
});
|
|
|
|
const originalEmbedding = embeddingVectors[0];
|
|
const candidateEmbeddings = embeddingVectors.slice(1);
|
|
|
|
const n = candidates.length;
|
|
const selected: string[] = [];
|
|
const selectedEmbeddings: number[][] = [];
|
|
|
|
// Initialize priority queue
|
|
const pq = new PriorityQueue<{ index: number; gain: number }>();
|
|
|
|
// Calculate initial marginal gain for all candidates
|
|
for (let i = 0; i < n; i++) {
|
|
const gain = computeMarginalGain(
|
|
candidateEmbeddings[i],
|
|
selectedEmbeddings,
|
|
originalEmbedding,
|
|
alpha
|
|
);
|
|
pq.enqueue({ index: i, gain }, gain);
|
|
}
|
|
|
|
// Greedy selection
|
|
for (let iteration = 0; iteration < k; iteration++) {
|
|
if (pq.isEmpty()) break;
|
|
|
|
let bestCandidate: { index: number; gain: number } | undefined;
|
|
|
|
// Find candidate with maximum marginal gain
|
|
while (!pq.isEmpty()) {
|
|
const candidate = pq.dequeue()!;
|
|
const currentGain = computeMarginalGain(
|
|
candidateEmbeddings[candidate.index],
|
|
selectedEmbeddings,
|
|
originalEmbedding,
|
|
alpha
|
|
);
|
|
|
|
if (currentGain >= candidate.gain) {
|
|
bestCandidate = { index: candidate.index, gain: currentGain };
|
|
break;
|
|
} else {
|
|
// Create new object with updated gain to avoid infinite loop
|
|
pq.enqueue({ index: candidate.index, gain: currentGain }, currentGain);
|
|
}
|
|
}
|
|
|
|
if (bestCandidate) {
|
|
selected.push(candidates[bestCandidate.index]);
|
|
selectedEmbeddings.push(candidateEmbeddings[bestCandidate.index]);
|
|
}
|
|
}
|
|
|
|
return {
|
|
selectedData: selected,
|
|
embeddingTokens
|
|
};
|
|
};
|
|
|
|
return {
|
|
lazyGreedyQuerySelection,
|
|
embeddingModel: vectorModel.model
|
|
};
|
|
};
|