FastGPT/packages/service/core/ai/hooks/useTextCosine.ts
Archer 2ccb5b50c6
Some checks are pending
Document deploy / sync-images (push) Waiting to run
Document deploy / generate-timestamp (push) Blocked by required conditions
Document deploy / build-images (map[domain:https://fastgpt.cn suffix:cn]) (push) Blocked by required conditions
Document deploy / build-images (map[domain:https://fastgpt.io suffix:io]) (push) Blocked by required conditions
Document deploy / update-images (map[deployment:fastgpt-docs domain:https://fastgpt.cn kube_config:KUBE_CONFIG_CN suffix:cn]) (push) Blocked by required conditions
Document deploy / update-images (map[deployment:fastgpt-docs domain:https://fastgpt.io kube_config:KUBE_CONFIG_IO suffix:io]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / get-vars (push) Waiting to run
Build FastGPT images in Personal warehouse / build-fastgpt-images (map[arch:amd64 runs-on:ubuntu-24.04]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / build-fastgpt-images (map[arch:arm64 runs-on:ubuntu-24.04-arm]) (push) Blocked by required conditions
Build FastGPT images in Personal warehouse / release-fastgpt-images (push) Blocked by required conditions
V4.14.4 features (#6036)
* feat: add query optimize and bill (#6021)

* add query optimize and bill

* perf: query extension

* fix: embe model

* remove log

* remove log

* fix: test

---------

Co-authored-by: xxyyh <2289112474@qq>
Co-authored-by: archer <545436317@qq.com>

* feat: notice (#6013)

* feat: record user's language

* feat: notice points/dataset indexes; support count limit; update docker-compose.yml

* fix: ts error

* feat: send auth code i18n

* chore: dataset notice limit

* chore: adjust

* fix: ts

* fix: countLimit race condition; i18n en-prefix locale fallback to en

---------

Co-authored-by: archer <545436317@qq.com>

* perf: comment

* perf: send inform code

* fix: type error (#6029)

* feat: add ip region for chat logs (#6010)

* feat: add ip region for chat logs

* refactor: use Geolite2.mmdb

* fix: export chat logs

* fix: return location directly

* test: add unit test

* perf: log show ip data

* adjust commercial plans (#6008)

* plan frontend

* plan limit

* coupon

* discount coupon

* fix

* type

* fix audit

* type

* plan name

* legacy plan

* track

* feat: add discount coupon

* fix

* fix discount coupon

* openapi

* type

* type

* env

* api type

* fix

* fix: simple agent plugin input & agent dashboard card (#6034)

* refactor: remove gridfs (#6031)

* fix: replace gridfs multer operations with s3 compatible ops

* wip: s3 features

* refactor: remove gridfs

* fix

* perf: mock test

* doc

* doc

* doc

* fix: test

* fix: s3

* fix: mock s3

* remove invalid config

* fix: init query extension

* initv4144 (#6037)

* chore: initv4144

* fix

* version

* fix: new plans (#6039)

* fix: new plans

* qr modal tip

* fix: buffer raw text filename (#6040)

* fix: initv4144 (#6041)

* fix: pay refresh (#6042)

* fix: migration shell

* rename collection

* clear timerlock

* clear timerlock

* perf: faq

* perf: bill schema

* fix: openapi

* doc

* fix: share var render

* feat: delete dataset queue

* plan usage display (#6043)

* plan usage display

* text

* fix

* fix: ts

* perf: remove invalid code

* perf: init shell

* doc

* perf: rename field

* perf: avatar presign

* init

* custom plan text (#6045)

* fix plans

* fix

* fixed

* computed

---------

Co-authored-by: archer <545436317@qq.com>

* init shell

* plan text & price page back button (#6046)

* init

* index

* delete dataset

* delete dataset

* perf: delete dataset

* init

---------

Co-authored-by: YeYuheng <57035043+YYH211@users.noreply.github.com>
Co-authored-by: xxyyh <2289112474@qq>
Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com>
Co-authored-by: Roy <whoeverimf5@gmail.com>
Co-authored-by: heheer <heheer@sealos.io>
2025-12-08 01:44:15 +08:00

155 lines
4.2 KiB
TypeScript

/*
根据文本的余弦相似度,获取最大边际收益的检索词。
Reference: https://github.com/jina-ai/submodular-optimization
*/
import { getVectorsByText } from '../embedding';
import { getEmbeddingModel } from '../model';
class PriorityQueue<T> {
private heap: Array<{ item: T; priority: number }> = [];
enqueue(item: T, priority: number): void {
this.heap.push({ item, priority });
this.heap.sort((a, b) => b.priority - a.priority);
}
dequeue(): T | undefined {
return this.heap.shift()?.item;
}
isEmpty(): boolean {
return this.heap.length === 0;
}
size(): number {
return this.heap.length;
}
}
export const useTextCosine = ({ embeddingModel }: { embeddingModel: string }) => {
const vectorModel = getEmbeddingModel(embeddingModel);
// Calculate marginal gain
const computeMarginalGain = (
candidateEmbedding: number[],
selectedEmbeddings: number[][],
originalEmbedding: number[],
alpha: number = 0.3
): number => {
// Calculate cosine similarity
const cosineSimilarity = (a: number[], b: number[]): number => {
if (a.length !== b.length) {
throw new Error('Vectors must have the same length');
}
let dotProduct = 0;
let normA = 0;
let normB = 0;
for (let i = 0; i < a.length; i++) {
dotProduct += a[i] * b[i];
normA += a[i] * a[i];
normB += b[i] * b[i];
}
if (normA === 0 || normB === 0) return 0;
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
};
if (selectedEmbeddings.length === 0) {
return alpha * cosineSimilarity(originalEmbedding, candidateEmbedding);
}
let maxSimilarity = 0;
for (const selectedEmbedding of selectedEmbeddings) {
const similarity = cosineSimilarity(candidateEmbedding, selectedEmbedding);
maxSimilarity = Math.max(maxSimilarity, similarity);
}
const relevance = alpha * cosineSimilarity(originalEmbedding, candidateEmbedding);
const diversity = 1 - maxSimilarity;
return relevance + diversity;
};
// Lazy greedy query selection algorithm
const lazyGreedyQuerySelection = async ({
originalText,
candidates,
k,
alpha = 0.3
}: {
originalText: string;
candidates: string[]; // 候选文本
k: number;
alpha?: number;
}) => {
const { tokens: embeddingTokens, vectors: embeddingVectors } = await getVectorsByText({
model: vectorModel,
input: [originalText, ...candidates],
type: 'query'
});
const originalEmbedding = embeddingVectors[0];
const candidateEmbeddings = embeddingVectors.slice(1);
const n = candidates.length;
const selected: string[] = [];
const selectedEmbeddings: number[][] = [];
// Initialize priority queue
const pq = new PriorityQueue<{ index: number; gain: number }>();
// Calculate initial marginal gain for all candidates
for (let i = 0; i < n; i++) {
const gain = computeMarginalGain(
candidateEmbeddings[i],
selectedEmbeddings,
originalEmbedding,
alpha
);
pq.enqueue({ index: i, gain }, gain);
}
// Greedy selection
for (let iteration = 0; iteration < k; iteration++) {
if (pq.isEmpty()) break;
let bestCandidate: { index: number; gain: number } | undefined;
// Find candidate with maximum marginal gain
while (!pq.isEmpty()) {
const candidate = pq.dequeue()!;
const currentGain = computeMarginalGain(
candidateEmbeddings[candidate.index],
selectedEmbeddings,
originalEmbedding,
alpha
);
if (currentGain >= candidate.gain) {
bestCandidate = { index: candidate.index, gain: currentGain };
break;
} else {
// Create new object with updated gain to avoid infinite loop
pq.enqueue({ index: candidate.index, gain: currentGain }, currentGain);
}
}
if (bestCandidate) {
selected.push(candidates[bestCandidate.index]);
selectedEmbeddings.push(candidateEmbeddings[bestCandidate.index]);
}
}
return {
selectedData: selected,
embeddingTokens
};
};
return {
lazyGreedyQuerySelection,
embeddingModel: vectorModel.model
};
};