mirror of
https://github.com/labring/FastGPT.git
synced 2025-12-26 04:32:50 +00:00
118 lines
3.1 KiB
TypeScript
118 lines
3.1 KiB
TypeScript
/* vector crud */
|
|
import { PgVectorCtrl } from './pg';
|
|
import { ObVectorCtrl } from './oceanbase';
|
|
import { getVectorsByText } from '../../core/ai/embedding';
|
|
import type { EmbeddingRecallCtrlProps } from './controller.d';
|
|
import { type DelDatasetVectorCtrlProps, type InsertVectorProps } from './controller.d';
|
|
import { type EmbeddingModelItemType } from '@fastgpt/global/core/ai/model';
|
|
import { MILVUS_ADDRESS, PG_ADDRESS, OCEANBASE_ADDRESS } from './constants';
|
|
import { MilvusCtrl } from './milvus';
|
|
import {
|
|
setRedisCache,
|
|
getRedisCache,
|
|
delRedisCache,
|
|
incrValueToCache,
|
|
CacheKeyEnum,
|
|
CacheKeyEnumTime
|
|
} from '../redis/cache';
|
|
import { throttle } from 'lodash';
|
|
import { retryFn } from '@fastgpt/global/common/system/utils';
|
|
|
|
const getVectorObj = () => {
|
|
if (PG_ADDRESS) return new PgVectorCtrl();
|
|
if (OCEANBASE_ADDRESS) return new ObVectorCtrl();
|
|
if (MILVUS_ADDRESS) return new MilvusCtrl();
|
|
|
|
return new PgVectorCtrl();
|
|
};
|
|
|
|
const teamVectorCache = {
|
|
getKey: function (teamId: string) {
|
|
return `${CacheKeyEnum.team_vector_count}:${teamId}`;
|
|
},
|
|
get: async function (teamId: string) {
|
|
const countStr = await getRedisCache(teamVectorCache.getKey(teamId));
|
|
if (countStr) {
|
|
return Number(countStr);
|
|
}
|
|
return undefined;
|
|
},
|
|
set: function ({ teamId, count }: { teamId: string; count: number }) {
|
|
retryFn(() =>
|
|
setRedisCache(teamVectorCache.getKey(teamId), count, CacheKeyEnumTime.team_vector_count)
|
|
).catch();
|
|
},
|
|
delete: throttle(
|
|
function (teamId: string) {
|
|
return retryFn(() => delRedisCache(teamVectorCache.getKey(teamId))).catch();
|
|
},
|
|
30000,
|
|
{
|
|
leading: true,
|
|
trailing: true
|
|
}
|
|
),
|
|
incr: function (teamId: string, count: number) {
|
|
retryFn(() => incrValueToCache(teamVectorCache.getKey(teamId), count)).catch();
|
|
}
|
|
};
|
|
|
|
const Vector = getVectorObj();
|
|
|
|
export const initVectorStore = Vector.init;
|
|
export const recallFromVectorStore = (props: EmbeddingRecallCtrlProps) =>
|
|
retryFn(() => Vector.embRecall(props));
|
|
export const getVectorDataByTime = Vector.getVectorDataByTime;
|
|
|
|
// Count vector
|
|
export const getVectorCountByTeamId = async (teamId: string) => {
|
|
const cacheCount = await teamVectorCache.get(teamId);
|
|
if (cacheCount !== undefined) {
|
|
return cacheCount;
|
|
}
|
|
|
|
const count = await Vector.getVectorCount({ teamId });
|
|
|
|
teamVectorCache.set({
|
|
teamId,
|
|
count
|
|
});
|
|
|
|
return count;
|
|
};
|
|
export const getVectorCount = Vector.getVectorCount;
|
|
|
|
export const insertDatasetDataVector = async ({
|
|
model,
|
|
inputs,
|
|
...props
|
|
}: InsertVectorProps & {
|
|
inputs: string[];
|
|
model: EmbeddingModelItemType;
|
|
}) => {
|
|
const { vectors, tokens } = await getVectorsByText({
|
|
model,
|
|
input: inputs,
|
|
type: 'db'
|
|
});
|
|
const { insertIds } = await retryFn(() =>
|
|
Vector.insert({
|
|
...props,
|
|
vectors
|
|
})
|
|
);
|
|
|
|
teamVectorCache.incr(props.teamId, insertIds.length);
|
|
|
|
return {
|
|
tokens,
|
|
insertIds
|
|
};
|
|
};
|
|
|
|
export const deleteDatasetDataVector = async (props: DelDatasetVectorCtrlProps) => {
|
|
const result = await retryFn(() => Vector.delete(props));
|
|
teamVectorCache.delete(props.teamId);
|
|
return result;
|
|
};
|