add mineru_saas_api for fastgpt (#5923)

* add pdf-mineru

添加了基于MinerU的PDF转Markdown接口服务,调用方式与pdf-marker一致,开箱即用。

* Rename Readme.md to README.md

* Rename pdf_parser_mineru.py to main.py

* mineru_saas_api for fastgpt

已有成熟本地部署方案,现提供使用mineru官方saas服务api的调用方法
This commit is contained in:
ROKY 2025-12-18 11:08:24 +08:00 committed by GitHub
parent cffe395e9a
commit 7f715a8752
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 448 additions and 338 deletions

View File

@ -0,0 +1,21 @@
__pycache__
.pyc
.pyo
.pyd
.Python
env
venv
.venv
pip-log.txt
pip-delete-this-directory.txt
.tox
.coverage
.coverage.
.cache
nosetests.xml
coverage.xml
.cover
.log
.git
.mypy_cache
.pytest_cache

View File

@ -0,0 +1 @@
MINERU_TOKEN=官网申请的API 密钥

View File

@ -0,0 +1,21 @@
# ---- 基础镜像 ----
FROM python:3.12-slim
# ---- 工作目录 ----
WORKDIR /app
# ---- 复制代码 ----
COPY mineru_saas_api.py .
COPY requirements.txt .
# ---- 安装依赖 ----
RUN pip install --no-cache-dir -r requirements.txt
# ---- 环境变量(运行时注入)----
ENV MINERU_TOKEN="YOUR_TOKEN_WILL_BE_INJECTED"
# ---- 暴露端口 ----
EXPOSE 1234
# ---- 启动命令 ----
CMD ["uvicorn", "mineru_saas_api:app", "--host", "0.0.0.0", "--port", "1234"]

View File

@ -1,85 +1,194 @@
# Readme
# **MinerU SaaS Wrapper For Fastgpt 详细部署文档**
**—— 为 FastGPT 提供稳定、高效、开箱即用的纯白嫖文档解析服务转接服务用grok写的文档也是有不明白出问题了`docker logs -f mineru-saas-wrapper` 查看日志,问他~**
# 项目介绍
---
本项目参照官方插件**pdf-marker**基于MinertU实现了一个高效的 **PDF 转 Markdown 接口服务**,通过高性能的接口设计,快速将 PDF 文档转换为 Markdown 格式文本。
- **简洁性:**项目无需修改代码,仅需调整文件路径即可使用,简单易用
- **易用性:**通过提供简洁的 API开发者只需发送 HTTP 请求即可完成 PDF 转换
- **灵活性:**支持本地部署,便于快速上手和灵活集成
> **适用人群**FastGPT 开发者、后端工程师、DevOps、AI 应用集成者
> **目标**:在 **5 分钟内**完成从零到生产可用的 MinerU saas服务api的文档解析服务部署
# 配置推荐
---
配置及速率请参照[MinerU项目](https://github.com/opendatalab/MinerU/blob/master/README_zh-CN.md)官方介绍。
## 一、项目概述
# 本地开发
| 项目 | 说明 |
|------|------|
| **名称** | MinerU SaaS Wrapper for FastGPT |
| **框架** | FastAPI + Uvicorn |
| **核心功能** | 接收文件 → 调用 MinerU 官方 SaaS API → 轮询结果 → 返回内嵌图片的 Markdown → fasgpt读取解析内容转为知识库 |
| **部署方式** | Docker推荐 / docker-compose |
| **接口路径** | `POST /v2/parse/file` |
## 基本流程
---
1、安装基本环境主要参照官方文档[使用CPU及GPU](https://github.com/opendatalab/MinerU/blob/master/README_zh-CN.md#%E4%BD%BF%E7%94%A8GPU)运行MinerU的方式进行。具体如下首先使用anaconda安装基础运行环境
## 二、前置条件
| **MinerU Token** | 在 [https://mineru.net](https://mineru.net) 注册并获取 SaaS Token |
> **获取 Token 步骤**
> 1. 登录 MinerU 官网
> 2. 进入 **控制台 → API 密钥**
> 3. 创建新密钥(建议命名 `fastgpt-wrapper`
> 4. 复制完整 Token`eyJ...` 开头)
---
## 三、目录结构说明
```bash
conda create -n mineru python=3.10
conda activate mineru
pip install -U "magic-pdf[full]" --extra-index-url https://wheels.myhloli.com -i https://mirrors.aliyun.com/pypi/simple
mineru-saas-wrapper/
├── .dockerignore
├── Dockerfile
├── docker-compose.yml
├── mineru_saas_api.py # 主服务逻辑
├── requirements.txt # 依赖包
├── .env # (可选)环境变量文件
└── README.md
```
2、[下载模型权重文件](https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_zh_cn.md)
---
## 四、部署方式一:使用 `docker-compose`(推荐)
### 步骤 1克隆项目
```bash
pip install modelscope
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/scripts/download_models.py -O download_models.py
python download_models.py
mkdir mineru-saas-wrapper
cd mineru-saas-wrapper
```
python脚本会自动下载模型文件并配置好配置文件中的模型目录
配置文件可以在用户目录中找到,文件名为`magic-pdf.json`
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名"
3、如果您的显卡显存大于等于 **8GB** 可以进行以下流程测试CUDA解析加速效果。默认为cpu模式使用显卡的话需修改【用户目录】中配置文件magic-pdf.json中"device-mode"的值。
### 步骤 2创建 `.env` 文件(推荐,防止 Token 泄露)
```bash
touch .env
```
编辑 `.env`
```env
MINERU_TOKEN=官网申请的API 密钥
POLL_INTERVAL=3
POLL_TIMEOUT=600
PORT=1234
```
### 步骤 3修改 `docker-compose.yml`
```yaml
services:
mineru-saas-wrapper:
build:
context: .
dockerfile: Dockerfile
container_name: mineru-saas-wrapper
restart: unless-stopped
ports:
- "1234:1234"
env_file:
- .env # 改为读取 .env 文件
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:1234/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 10s
logging:
driver: "json-file"
options:
max-size: "10m"
max-file: "3"
```
### 步骤 4启动服务
```bash
docker-compose up -d --build
```
### 步骤 5验证服务状态
```bash
# 查看容器状态
docker ps | grep mineru-saas-wrapper
# 查看健康检查
curl http://localhost:1234/health
# 预期输出:
{"status":"healthy"}
```
## 五、接口测试
### 1. 使用 `curl` 测试
```bash
curl -X POST "http://localhost:1234/v2/parse/file" \
-F "file=@./sample.pdf" | jq
```
### 2. 预期成功响应
```json
{
"device-mode":"cuda"
"success": true,
"message": "",
"markdown": "# 标题\n\n![](...) ...",
"pages": 8
}
```
4、如需使用GPU加速需额外再安装依赖。
### 查看详细日志
```bash
pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 "numpy<2.0.0" --index-url https://download.pytorch.org/whl/cu118
docker logs -f mineru-saas-wrapper
```
```bash
pip install paddlepaddle-gpu==2.6.1
关键日志关键词:
- `Got upload url` → 上传成功
- `Polling ... -> done` → 解析完成
- `Parse finished, X pages` → 成功返回
---
## 九、FastGPT 集成指南
### 1. 在 FastGPT 中配置「文档解析」节点
| 字段 | 值 |
|------|---- |
| **解析服务地址** | `http://your-server-ip:1234/v2/parse/file` |
| **请求方式** | POST |
| **文件字段名** | `file` |
| **响应字段映射** | `markdown` → 内容,`pages` → 页数 |
### 2. FastGPT 示例配置JSON
```json
// 已使用 json5 进行解析,会自动去掉注释,无需手动去除
{
"feConfigs": {
"lafEnv": "https://laf.dev", // laf环境。 https://laf.run (杭州阿里云) ,或者私有化的laf环境。如果使用 Laf openapi 功能,需要最新版的 laf 。
"mcpServerProxyEndpoint": "" // mcp server 代理地址,例如: http://localhost:3005
},
"systemEnv": {
"datasetParseMaxProcess": 10, // 知识库文件解析最大线程数量
"vectorMaxProcess": 10, // 向量处理线程数量
"qaMaxProcess": 10, // 问答拆分线程数量
"vlmMaxProcess": 10, // 图片理解模型最大处理进程
"tokenWorkers": 30, // Token 计算线程保持数,会持续占用内存,不能设置太大。
"hnswEfSearch": 100, // 向量搜索参数,仅对 PG 和 OB 生效。越大搜索越精确但是速度越慢。设置为100有99%+精度。
"hnswMaxScanTuples": 100000, // 向量搜索最大扫描数据量,仅对 PG生效。
"customPdfParse": {
"url": "http://your-server-ip:1234/v2/parse/file", // 自定义 PDF 解析服务地址
"key": "", // 自定义 PDF 解析服务密钥
"doc2xKey": "", // doc2x 服务密钥
"price": 0 // PDF 解析服务价格
}
}
}
```
---
5、克隆一个FastGPT的项目文件
**部署完成!**
现在你的 FastGPT 已拥有强大的 **MinerU 文档解析能力**,支持 PDF + 图片 → 完美 Markdown 内嵌渲染。
```
git clone https://github.com/labring/FastGPT.git
```
6、将主目录设置为 plugins/model 下的pdf-mineru文件夹
```
cd /plugins/model/pdf-mineru/
```
7、执行文件pdf_parser_mineru.py启动服务
```bash
python pdf_parser_mineru.py
```
# 访问示例
仿照了**pdf-marker**的方式。
```bash
curl --location --request POST "http://localhost:7231/v1/parse/file" \
--header "Authorization: Bearer your_access_token" \
--form "file=@./file/chinese_test.pdf"
```
> 如有问题,欢迎提交 Issue 或查看日志排查。祝你解析愉快!

View File

@ -0,0 +1,32 @@
services:
mineru-saas-wrapper:
build:
context: .
dockerfile: Dockerfile
container_name: mineru-saas-wrapper
restart: unless-stopped
ports:
- "1234:1234"
environment:
# 你的 MinerU SaaS API Token必须
- MINERU_TOKEN=eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiIzODcwOTM0MyIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTc2Mjc2MTEzMywiY2xpZW50SWQiOiJsa3pkeDU3bnZ5MjJqa3BxOXgydyIsInBob25lIjoiMTg1MjEzMzQ1MDEiLCJvcGVuSWQiOm51bGwsInV1aWQiOiI4OTI5YjgzNC05ZTY4LTRhOTctOTNiMi1hMGVkNDk5N2YzYmYiLCJlbWFpbCI6IiIsImV4cCI6MTc2Mzk3MDczM30.CadUrEtAc_B_04opSk4b5ykK60m-CbrXArZuhNGV35MKsX_SaWTbrMHd3ND309f9fgM10QTWHAszjP2Duamzwg
# 可选:自定义轮询间隔(秒)
- POLL_INTERVAL=3
# 可选:最大等待时间(秒)
- POLL_TIMEOUT=600
# 可选:如果你的网络在国外,可改为国内加速镜像源(可选)
# - MINERU_BASE=https://mineru.net
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:1234/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 10s
logging:
driver: "json-file"
options:
max-size: "10m"
max-file: "3"

View File

@ -1,282 +0,0 @@
import json
import os
from base64 import b64encode
from glob import glob
from io import StringIO
from typing import Tuple, Union
import uvicorn
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
from loguru import logger
from tempfile import TemporaryDirectory
from pathlib import Path
import fitz # PyMuPDF
import asyncio
from concurrent.futures import ProcessPoolExecutor
import torch
import multiprocessing as mp
from contextlib import asynccontextmanager
import time
import magic_pdf.model as model_config
from magic_pdf.config.enums import SupportedPdfParseMethod
from magic_pdf.data.data_reader_writer import DataWriter, FileBasedDataWriter
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.operators.models import InferenceResult
from magic_pdf.operators.pipes import PipeResult
model_config.__use_inside_model__ = True
app = FastAPI()
process_variables = {}
my_pool = None
class MemoryDataWriter(DataWriter):
def __init__(self):
self.buffer = StringIO()
def write(self, path: str, data: bytes) -> None:
if isinstance(data, str):
self.buffer.write(data)
else:
self.buffer.write(data.decode("utf-8"))
def write_string(self, path: str, data: str) -> None:
self.buffer.write(data)
def get_value(self) -> str:
return self.buffer.getvalue() # 修复:使用 getvalue() 而不是 get_value()
def close(self):
self.buffer.close()
def worker_init(counter, lock):
num_gpus = torch.cuda.device_count()
processes_per_gpu = int(os.environ.get('PROCESSES_PER_GPU', 1))
with lock:
worker_id = counter.value
counter.value += 1
if num_gpus == 0:
device = 'cpu'
else:
device_id = worker_id // processes_per_gpu
if device_id >= num_gpus:
raise ValueError(f"Worker ID {worker_id} exceeds available GPUs ({num_gpus}).")
device = f'cuda:{device_id}'
config = {
"parse_method": "auto",
"ADDITIONAL_KEY": "VALUE"
}
converter = init_converter(config, device_id)
pid = os.getpid()
process_variables[pid] = converter
print(f"Worker {worker_id}: Models loaded successfully on {device}!")
def init_converter(config, device_id):
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
return config
def img_to_base64(img_path: str) -> str:
with open(img_path, "rb") as img_file:
return b64encode(img_file.read()).decode('utf-8')
def embed_images_as_base64(md_content: str, image_dir: str) -> str:
lines = md_content.split('\n')
new_lines = []
for line in lines:
if line.startswith("![") and "](" in line and ")" in line:
start_idx = line.index("](") + 2
end_idx = line.index(")", start_idx)
img_rel_path = line[start_idx:end_idx]
img_name = os.path.basename(img_rel_path)
img_path = os.path.join(image_dir, img_name)
logger.info(f"Checking image: {img_path}")
if os.path.exists(img_path):
img_base64 = img_to_base64(img_path)
new_line = f"![](data:image/png;base64,{img_base64})"
new_lines.append(new_line)
else:
logger.warning(f"Image not found: {img_path}")
new_lines.append(line)
else:
new_lines.append(line)
return '\n'.join(new_lines)
def process_pdf(pdf_path, output_dir):
try:
pid = os.getpid()
config = process_variables.get(pid, "No variable")
parse_method = config["parse_method"]
with open(str(pdf_path), "rb") as f:
pdf_bytes = f.read()
output_path = Path(output_dir) / f"{Path(pdf_path).stem}_output"
os.makedirs(str(output_path), exist_ok=True)
image_dir = os.path.join(str(output_path), "images")
os.makedirs(image_dir, exist_ok=True)
image_writer = FileBasedDataWriter(str(output_path))
# 处理 PDF
infer_result, pipe_result = process_pdf_content(pdf_bytes, parse_method, image_writer)
md_content_writer = MemoryDataWriter()
pipe_result.dump_md(md_content_writer, "", "images")
md_content = md_content_writer.get_value()
md_content_writer.close()
# 获取保存的图片路径
image_paths = glob(os.path.join(image_dir, "*.jpg"))
logger.info(f"Saved images by magic_pdf: {image_paths}")
# 如果 magic_pdf 未保存足够图片,使用 fitz 提取
if not image_paths or len(image_paths) < 3: # 假设至少 3 张图片
logger.warning("Insufficient images saved by magic_pdf, falling back to fitz extraction")
image_map = {}
original_names = []
# 收集 Markdown 中的所有图片文件名
for line in md_content.split('\n'):
if line.startswith("![") and "](" in line and ")" in line:
start_idx = line.index("](") + 2
end_idx = line.index(")", start_idx)
img_rel_path = line[start_idx:end_idx]
original_names.append(os.path.basename(img_rel_path))
# 提取图片并映射
with fitz.open(pdf_path) as doc:
img_counter = 0
for page_num, page in enumerate(doc):
for img_index, img in enumerate(page.get_images(full=True)):
xref = img[0]
base = doc.extract_image(xref)
if img_counter < len(original_names):
img_name = original_names[img_counter] # 使用 Markdown 中的原始文件名
else:
img_name = f"page_{page_num}_img_{img_index}.jpg"
img_path = os.path.join(image_dir, img_name)
with open(img_path, "wb") as f:
f.write(base["image"])
if img_counter < len(original_names):
image_map[original_names[img_counter]] = img_name
img_counter += 1
image_paths = glob(os.path.join(image_dir, "*.jpg"))
logger.info(f"Images extracted by fitz: {image_paths}")
# 更新 Markdown仅在必要时替换
for original_name, new_name in image_map.items():
if original_name != new_name:
md_content = md_content.replace(f"images/{original_name}", f"images/{new_name}")
return {
"status": "success",
"text": md_content,
"output_path": str(output_path),
"images": image_paths
}
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
return {
"status": "error",
"message": str(e),
"file": str(pdf_path)
}
def process_pdf_content(pdf_bytes, parse_method, image_writer):
ds = PymuDocDataset(pdf_bytes)
infer_result: InferenceResult = None
pipe_result: PipeResult = None
if parse_method == "ocr":
infer_result = ds.apply(doc_analyze, ocr=True)
pipe_result = infer_result.pipe_ocr_mode(image_writer)
elif parse_method == "txt":
infer_result = ds.apply(doc_analyze, ocr=False)
pipe_result = infer_result.pipe_txt_mode(image_writer)
else: # auto
if ds.classify() == SupportedPdfParseMethod.OCR:
infer_result = ds.apply(doc_analyze, ocr=True)
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
infer_result = ds.apply(doc_analyze, ocr=False)
pipe_result = infer_result.pipe_txt_mode(image_writer)
return infer_result, pipe_result
@asynccontextmanager
async def lifespan(app: FastAPI):
try:
mp.set_start_method('spawn')
except RuntimeError:
raise RuntimeError("Set start method to spawn twice. This may be a temporary issue with the script. Please try running it again.")
global my_pool
manager = mp.Manager()
worker_counter = manager.Value('i', 0)
worker_lock = manager.Lock()
gpu_count = torch.cuda.device_count()
my_pool = ProcessPoolExecutor(max_workers=gpu_count * int(os.environ.get('PROCESSES_PER_GPU', 1)),
initializer=worker_init, initargs=(worker_counter, worker_lock))
yield
if my_pool:
my_pool.shutdown(wait=True)
print("Application shutdown, cleaning up...")
app.router.lifespan_context = lifespan
@app.post("/v2/parse/file")
async def process_pdfs(file: UploadFile = File(...)):
s_time = time.time()
with TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir) / file.filename
with open(str(temp_path), "wb") as buffer:
buffer.write(await file.read())
# 验证 PDF 文件
try:
with fitz.open(str(temp_path)) as pdf_document:
total_pages = pdf_document.page_count
except fitz.fitz.FileDataError:
return JSONResponse(content={"success": False, "message": "", "error": "Invalid PDF file"}, status_code=400)
except Exception as e:
logger.error(f"Error opening PDF: {str(e)}")
return JSONResponse(content={"success": False, "message": "", "error": f"Internal server error: {str(e)}"}, status_code=500)
try:
loop = asyncio.get_running_loop()
results = await loop.run_in_executor(
my_pool,
process_pdf,
str(temp_path),
str(temp_dir)
)
if results.get("status") == "error":
return JSONResponse(content={
"success": False,
"message": "",
"error": results.get("message")
}, status_code=500)
# 嵌入 Base64
image_dir = os.path.join(results.get("output_path"), "images")
md_content_with_base64 = embed_images_as_base64(results.get("text"), image_dir)
return {
"success": True,
"message": "",
"markdown": md_content_with_base64,
"pages": total_pages
}
except Exception as e:
logger.error(f"Error in process_pdfs: {str(e)}")
return JSONResponse(content={
"success": False,
"message": "",
"error": f"Internal server error: {str(e)}"
}, status_code=500)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7231)

View File

@ -0,0 +1,203 @@
# -*- coding: utf-8 -*-
import os
import io
import time
import zipfile
import base64
import tempfile
from pathlib import Path
from typing import List
import httpx
import uvicorn
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from loguru import logger
# --------------------------------------------------------------
# 配置全部走环境变量Docker 里通过 -e 注入)
# --------------------------------------------------------------
MINERU_TOKEN = os.getenv("MINERU_TOKEN") # 必须
MINERU_BASE = os.getenv("MINERU_BASE", "https://mineru.net")
POLL_INTERVAL = int(os.getenv("POLL_INTERVAL", "3")) # 秒
POLL_TIMEOUT = int(os.getenv("POLL_TIMEOUT", "600")) # 秒
# --------------------------------------------------------------
app = FastAPI(title="MinerU SaaS Wrapper", version="1.0.0")
# ---------- 工具 ----------
def img_to_base64(img_bytes: bytes) -> str:
return base64.b64encode(img_bytes).decode("utf-8")
def embed_images(md: str, img_dir: Path) -> str:
"""把 markdown 中 ![xxx](relative_path) 替换为 data-uri"""
lines = md.splitlines()
out: List[str] = []
for line in lines:
if line.startswith("![") and "](" in line and ")" in line:
start = line.index("](") + 2
end = line.index(")", start)
rel = line[start:end]
img_path = img_dir / rel
if img_path.is_file():
b64 = img_to_base64(img_path.read_bytes())
new_line = f'![](data:image/png;base64,{b64})'
out.append(new_line)
continue
out.append(line)
return "\n".join(out)
# ---------- SaaS 调用 ----------
async def create_task(file_bytes: bytes, filename: str) -> str:
url = f"{MINERU_BASE}/api/v4/extract/task"
headers = {
"Authorization": f"Bearer {MINERU_TOKEN}",
"Content-Type": "application/json",
}
# 这里使用 VLM默认如需 pipeline 可改 model_version
payload = {
"url": "", # 必填但我们用 upload 方式,留空
"model_version": "vlm",
}
# SaaS 目前只接受 URL我们先把文件上传到临时公开位置不可行 → 改用 **批量上传** 方式
# 下面改成 **批量文件上传**(一次只传一个文件),返回 task_id 列表
raise NotImplementedError("请看下方完整实现")
# --------------------------------------------------------------
# 下面是 **完整实现**(一次只处理一个文件,使用批量上传接口)
# --------------------------------------------------------------
async def _upload_and_create(file_bytes: bytes, filename: str) -> str:
"""
1. 调用 /api/v4/file-urls/batch 获取上传 URL一次一个文件
2. PUT 上传文件
3. 系统自动提交解析任务返回 batch_id
4. 轮询 /api/v4/extract-results/batch/{batch_id} 取结果
"""
client = httpx.AsyncClient(timeout=60.0)
# ---- 1. 申请上传 URL ----
batch_url = f"{MINERU_BASE}/api/v4/file-urls/batch"
headers = {"Authorization": f"Bearer {MINERU_TOKEN}", "Content-Type": "application/json"}
batch_payload = {
"files": [{"name": filename}],
"model_version": "vlm"
}
r = await client.post(batch_url, headers=headers, json=batch_payload)
r.raise_for_status()
batch_resp = r.json()
if batch_resp.get("code") != 0:
raise HTTPException(status_code=500, detail=f"MinerU batch create fail: {batch_resp.get('msg')}")
batch_id = batch_resp["data"]["batch_id"]
upload_url = batch_resp["data"]["file_urls"][0]
logger.info(f"Got upload url for {filename}, batch_id={batch_id}")
# ---- 2. 上传文件 ----
put_r = await client.put(upload_url, content=file_bytes)
put_r.raise_for_status()
logger.info(f"File uploaded, status={put_r.status_code}")
# ---- 3. 轮询结果 ----
result_url = f"{MINERU_BASE}/api/v4/extract-results/batch/{batch_id}"
start = time.time()
while True:
if time.time() - start > POLL_TIMEOUT:
raise HTTPException(status_code=504, detail="MinerU SaaS timeout")
poll = await client.get(result_url, headers=headers)
poll.raise_for_status()
data = poll.json()
if data.get("code") != 0:
raise HTTPException(status_code=500, detail=data.get("msg"))
results = data["data"]["extract_result"]
# 只有一个文件
task = results[0]
state = task["state"]
logger.debug(f"Polling {batch_id} -> {state}")
if state == "done":
zip_url = task["full_zip_url"]
await client.aclose()
return zip_url
if state in ("failed",):
raise HTTPException(status_code=500, detail=task.get("err_msg", "MinerU parse failed"))
# pending / running / converting / waiting-file
await asyncio.sleep(POLL_INTERVAL)
# ---------- 主入口 ----------
import asyncio
@app.post("/v2/parse/file")
async def parse_file(file: UploadFile = File(...)):
"""
FastGPT 调用的统一入口
"""
if not MINERU_TOKEN:
raise HTTPException(status_code=500, detail="MINERU_TOKEN not set")
allowed = {".pdf", ".png", ".jpeg", ".jpg"}
ext = Path(file.filename).suffix.lower()
if ext not in allowed:
raise HTTPException(status_code=400,
detail=f"Unsupported file type {ext}. Allowed: {allowed}")
file_bytes = await file.read()
if not file_bytes:
raise HTTPException(status_code=400, detail="Empty file")
filename = Path(file.filename).name
start = time.time()
try:
# 1. 上传 + 提交任务 → 得到 zip_url
zip_url = await _upload_and_create(file_bytes, filename)
# 2. 下载 zip
async with httpx.AsyncClient() as client:
resp = await client.get(zip_url)
resp.raise_for_status()
zip_bytes = resp.content
# 3. 解压到临时目录
with tempfile.TemporaryDirectory() as tmp:
tmp_path = Path(tmp)
with zipfile.ZipFile(io.BytesIO(zip_bytes)) as z:
z.extractall(tmp_path)
# 4. 找 markdown默认是和文件名同名的 .md
md_files = list(tmp_path.rglob("*.md"))
if not md_files:
raise HTTPException(status_code=500, detail="No markdown in result zip")
md_path = md_files[0]
markdown = md_path.read_text(encoding="utf-8")
# 5. 嵌入图片(图片在同一级目录或子目录)
img_dir = md_path.parent
markdown_b64 = embed_images(markdown, img_dir)
# 6. 计算页数zip 中通常有 page_*.png
page_imgs = list(tmp_path.rglob("page_*.png")) + list(tmp_path.rglob("page_*.jpg"))
pages = len(page_imgs)
logger.info(f"Parse finished, {pages} pages, {time.time()-start:.1f}s")
return JSONResponse({
"success": True,
"message": "",
"markdown": markdown_b64,
"pages": pages
})
except Exception as e:
logger.exception(f"Parse error for {filename}")
raise HTTPException(status_code=500, detail=str(e))
# ---------- 健康检查 ----------
@app.get("/health")
async def health():
return {"status": "healthy"}
# --------------------------------------------------------------
if __name__ == "__main__":
port = int(os.getenv("PORT", "1234"))
host = os.getenv("HOST", "0.0.0.0")
logger.info(f"Starting MinerU SaaS wrapper on {host}:{port}")
uvicorn.run("mineru_saas_api:app", host=host, port=port, reload=False)

View File

@ -0,0 +1,5 @@
fastapi>=0.104.0
uvicorn[standard]>=0.24.0
httpx>=0.27.0
loguru>=0.7.2
python-multipart>=0.0.6